Summary:
* Most of the simplifications in SimplifyShuffleVectorInst depend on the
concrete value of, or the length of the mask vector. For scalable
vectors, this cannot be known at compile time.
** for these tests, detect if the vector is scalable before attempting
the transformation
* The functions ShuffleVectorInst::getMaskValue and
ShuffleVectorInst::getShuffleMask access the value of the constant mask.
However, since the length of the mask is unknown at compile time, these
function do not work for scalable vectors. Add asserts to ensure that
the input mask is not scalable
Reviewers: efriedma, sdesmalen, apazos, chrisj, huihuiz
Reviewed By: efriedma
Subscribers: tschuett, hiraditya, rkruppe, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73555
Side notes from D73669, no need to guard the iteration on vectors, as
it is explicitly looking for a ConstantVector/ConstantDataVector, which
is not expected to be scalable at the moment. So, add the test only.
Summary:
Similar to issue D71445. Scalable vector should not be evaluated element by element.
Add support to handle scalable vector UndefValue.
Reviewers: sdesmalen, efriedma, apazos, huntergr, willlovett
Reviewed By: efriedma
Subscribers: tschuett, hiraditya, rkruppe, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73678
We seem to be inheriting the cost from sse4.1. But if we have 256-bit registers we should be able to do this with just one extract to split the 16i16 and two v8i16->v8i32 operations so our cost should be 3 not 4.
Differential Revision: https://reviews.llvm.org/D73646
Summary:
Treat scalable allocas as if they have storage size of 0, and
scalable-typed memory accesses as if their range is unlimited.
This is not a proper support of scalable vector types in the analysis -
we can do better, but not today.
Reviewers: vitalybuka
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73394
These bots failed for this several months ago and as a result, this
check was removed. If they still fail I'm going to try to see if I
can figure out why.
Summary:
Enable the new diveregence analysis by default for AMDGPU.
Resubmit with test updates since GPUDA was causing failures on Windows.
Reviewers: rampitec, nhaehnle, arsenm, thakis
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73315
Summary: Fixes crash that could occur when a divergent terminator has an unreachable parent.
Reviewers: rampitec, nhaehnle, arsenm
Subscribers: jvesely, wdng, hiraditya, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73323
This is a very basic MVE gather/scatter cost model, based roughly on the
code that we will currently produce. It does not handle truncating
scatters or extending gathers correctly yet, as it is difficult to tell
that they are going to be correctly extended/truncated from the limited
information in the cost function.
This can be improved as we extend support for these in the future.
Based on code originally written by David Sherwood.
Differential Revision: https://reviews.llvm.org/D73021
llvm.memset intrinsics do only write memory, but are missing
IntrWriteMem, so they doesNotReadMemory() returns false for them.
The test change is due to the test checking the fn attribute ids at the
call sites, which got bumped up due to a new combination with writeonly
appearing in the test file.
Reviewers: jdoerfert, reames, efriedma, nlopes, lebedev.ri
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D72789
If addrecexpr has nuw flag, the value should never be less than its
start value and start value does not required to be SCEVConstant.
Reviewed By: nikic, sanjoy
Differential Revision: https://reviews.llvm.org/D71690
Summary:
This patch associates ordinal numbers to the DDG Nodes allowing
the builder to order nodes within a pi-block in program order. The
algorithm works by simply assuming the order in which the BBList
is fed into the builder. The builder already relies on the blocks being
in program order so that it can compute the dependencies correctly.
Similarly the order of instructions in their parent basic blocks
determine their program order.
Authored By: bmahjour
Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert
Reviewed By: Meinersbur
Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto, ppc-slack
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70986
In order to use assumptions, computeKnownBits needs a context
instruction. We can use the GEP, if it is an instruction. We already
pass the assumption cache, but it cannot be used without a context
instruction.
Reviewers: anemet, asbirlea, hfinkel, spatel
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D71264
If the pointer was loaded/stored before the null check, the check
is redundant and can be removed. For now the optimizers do not
remove the nullptr check, see https://gcc.godbolt.org/z/H2r5GG.
The patch allows to use more nonnull constraints. Also, it found
one more optimization in some PowerPC test. This is my first llvm
review, I am free to any comments.
Differential Revision: https://reviews.llvm.org/D71177
Summary:
The current da printer shows the dependence without indicating
which instructions are being considered as the src vs dst. It
also silently ignores call instructions, despite the fact that
they create confused dependence edges to other memory
instructions. This patch addresses these two issues plus a
couple of minor non-functional improvements.
Authored By: bmahjour
Reviewer: dmgreen, fhahn, philip.pfaffe, chandlerc
Reviewed By: dmgreen, fhahn
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71088
Don't try to fold away shuffles which can't be folded. Fix creation of
shufflevector constant expressions.
Differential Revision: https://reviews.llvm.org/D71147
This attempts to teach the cost model in Arm that code such as:
%s = shl i32 %a, 3
%a = and i32 %s, %b
Can under Arm or Thumb2 become:
and r0, r1, r2, lsl #3
So the cost of the shift can essentially be free. To do this without
trying to artificially adjust the cost of the "and" instruction, it
needs to get the users of the shl and check if they are a type of
instruction that the shift can be folded into. And so it needs to have
access to the actual instruction in getArithmeticInstrCost, which if
available is added as an extra parameter much like getCastInstrCost.
We otherwise limit it to shifts with a single user, which should
hopefully handle most of the cases. The list of instruction that the
shift can be folded into include ADC, ADD, AND, BIC, CMP, EOR, MVN, ORR,
ORN, RSB, SBC and SUB. This translates to Add, Sub, And, Or, Xor and
ICmp.
Differential Revision: https://reviews.llvm.org/D70966
This adds some extra cost model tests for shifts, and does some minor
adjustments to some Neon code to make it clear as to what it applies to.
Both NFC.
This is a follow-up to D70607 where we made any
extract element on SLM more costly than default. But that is
pessimistic for extract from element 0 because that corresponds
to x86 movd/movq instructions. These generally have >1 cycle
latency, but they are probably implemented as single uop
instructions.
Note that no vectorization tests are affected by this change.
Also, no targets besides SLM are affected because those are
falling through to the default cost of 1 anyway. But this will
become visible/important if we add more specializations via cost
tables.
Differential Revision: https://reviews.llvm.org/D71023
Summary:
This fixes the memory leak in bec37c3fc7
and re-delivers the reverted patch.
In this patch the DDG DAG is sorted topologically to put the
nodes in the graph in the order that would satisfy all
dependencies. This helps transformations that would like to
generate code based on the DDG. Since the DDG is a DAG a
reverse-post-order traversal would give us the topological
ordering. This patch also sorts the basic blocks passed to
the builder based on program order to ensure that the
dependencies are computed in the correct direction.
Authored By: bmahjour
Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert
Reviewed By: Meinersbur
Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto, ppc-slack
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70609
Summary: b19ec1eb3d has been reverted because of the test failures
with PowerPC targets. This patch addresses the issues from the previous
commit.
Test Plan: ninja check-all. Confirmed that CodeGen/PowerPC/pr36292.ll
and CodeGen/PowerPC/sms-cpy-1.ll pass
Subscribers: llvm-commits
The Power 9 CPU has some features that are unlikely to be passed on to future
versions of the CPU. This patch separates this out so that future CPU does not
inherit them.
Differential Revision: https://reviews.llvm.org/D70466
I'm not sure what the effect of this change will be on all of the affected
tests or a larger benchmark, but it fixes the horizontal add/sub problems
noted here:
https://reviews.llvm.org/D59710?vs=227972&id=228095&whitespace=ignore-most#toc
The costs are based on reciprocal throughput numbers in Agner's tables for
PEXTR*; these appear to be very slow ops on Silvermont.
This is a small step towards the larger motivation discussed in PR43605:
https://bugs.llvm.org/show_bug.cgi?id=43605
Also, it seems likely that insert/extract is the source of perf regressions on
other CPUs (up to 30%) that were cited as part of the reason to revert D59710,
so maybe we'll extend the table-based approach to other subtargets.
Differential Revision: https://reviews.llvm.org/D70607
Summary:
While updatePostDominatedByUnreachable attemps to find basic blocks that are post-domianted by unreachable blocks, it currently cannot handle loops precisely, because it doesn't use the actual post dominator tree analysis but relies on heuristics of visiting basic blocks in post-order. More precisely, when the entire loop is post-dominated by the unreachable block, current algorithm fails to detect the entire loop as post-dominated by the unreachable because when the algorithm reaches to the loop latch it fails to tell all its successors (including the loop header) will "eventually" be post-domianted by the unreachable block, because the algorithm hasn't visited the loop header yet. This makes BPI for the loop latch to assume that loop backedges are taken with 100% of probability. And because of this, block frequency info sometimes marks virtually dead loops (which are post dominated by unreachable blocks) super hot, because 100% backedge-taken probability makes the loop iteration count the max value. updatePostDominatedByColdCall has the exact same problem as well.
To address this problem, this patch makes PostDominatedByUnreachable/PostDominatedByColdCall to be computed with the actual post-dominator tree.
Reviewers: skatkov, chandlerc, manmanren
Reviewed By: skatkov
Subscribers: manmanren, vsk, apilipenko, Carrot, qcolombet, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70104
Summary:
In this patch the DDG DAG is sorted topologically to put the
nodes in the graph in the order that would satisfy all
dependencies. This helps transformations that would like to
generate code based on the DDG. Since the DDG is a DAG a
reverse-post-order traversal would give us the topological
ordering. This patch also sorts the basic blocks passed to
the builder based on program order to ensure that the
dependencies are computed in the correct direction.
Authored By: bmahjour
Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert
Reviewed By: Meinersbur
Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto, ppc-slack
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70609