Functions in "(anonymous namespace)" was causing LLDB to crash when trying to complete a type and it would also cause functions arguments to appear in wrong place in frame display when showing function arguments.
llvm-svn: 177965
Fixed a crasher in the SourceManager where it wasn't checking the m_target member variable for NULL.
In doing this fix, I hardened this class to have weak pointers to the debugger and target in case they do go away. I also changed SBSourceManager to hold onto weak pointers to the debugger and target so they don't keep objects alive by holding a strong reference to them.
llvm-svn: 177365
in the Process destructor. Doing it there can be too late depending on what the internal state
and ProcessGDBRemote Async threads are doing.
<rdar://problem/13297536>
llvm-svn: 176203
Data formatters now cache themselves.
This commit provides a new formatter cache mechanism. Upon resolving a formatter (summary or synthetic), LLDB remembers the resolution for later faster retrieval.
Also moved the data formatters subsystem from the core to its own group and folder for easier management, and done some code reorganization.
The ObjC runtime v1 now returns a class name if asked for the dynamic type of an object. This is required for formatters caching to work with the v1 runtime.
Lastly, this commit disposes of the old hack where ValueObjects had to remember whether they were queried for formatters with their static or dynamic type.
Now the ValueObjectDynamicValue class works well enough that we can use its dynamic value setting for the same purpose.
llvm-svn: 173728
Major fixed to allow reading files that are over 4GB. The main problems were that the DataExtractor was using 32 bit offsets as a data cursor, and since we mmap all of our object files we could run into cases where if we had a very large core file that was over 4GB, we were running into the 4GB boundary.
So I defined a new "lldb::offset_t" which should be used for all file offsets.
After making this change, I enabled warnings for data loss and for enexpected implicit conversions temporarily and found a ton of things that I fixed.
Any functions that take an index internally, should use "size_t" for any indexes and also should return "size_t" for any sizes of collections.
llvm-svn: 173463
Setting breakpoints using "breakpoint set --selector <SEL>" previously didn't when there was no dSYM file.
Also fixed issues in the test suite that arose after fixing the bug.
Also fixed the log channels to properly ref count the log streams using weak pointers to the streams. This fixes a test suite problem that would happen when you specified a full path to the compiler with the "--compiler" option.
llvm-svn: 171816
When displaying function.name-with-args format will now print "varname=<unavailable>" instead of omitting argument names and values when there is an error reading the value.
llvm-svn: 169781
Fixed zero sized arrays to work correctly. This will only happen once we get a clang that emits correct debug info for zero sized arrays. For now I have marked the TestStructTypes.py as an expected failure.
llvm-svn: 169465
- add new header lldb-python.h to be included before other system headers
- short term fix (eventually python dependencies must be cleaned up)
Patch by Matt Kopec!
llvm-svn: 169341
This should delay initialization of Python until strictly necessary and speed-up debugger startup
Also, convert formatters for SEL and BOOL ObjC data-types from Python to C++, in order to reap more performance benefits from the above changes
llvm-svn: 166967
plugin
dynamic-loader
macosx-kernel
(bool) disable-kext-loading
To settings can be set using:
(lldb) settings set plugin.dynamic-loader.macosx-kernel.disable-kext-loading true
I currently only hooked up the DynamicLoader plug-ins, but the code is very easy to duplicate when and if we need settings for other plug-ins.
llvm-svn: 166294
This checkin adds the capability for LLDB to load plugins from external dylibs that can provide new commands
It exports an SBCommand class from the public API layer, and a new SBCommandPluginInterface
There is a minimal load-only plugin manager built into the debugger, which can be accessed via Debugger::LoadPlugin.
Plugins are loaded from two locations at debugger startup (LLDB.framework/Resources/PlugIns and ~/Library/Application Support/LLDB/PlugIns) and more can be (re)loaded via the "plugin load" command
For an example of how to make a plugin, refer to the fooplugin.cpp file in examples/plugins/commands
Caveats:
Currently, the new API objects and features are not exposed via Python.
The new commands can only be "parsed" (i.e. not raw) and get their command line via a char** parameter (we do not expose our internal Args object)
There is no unloading feature, which can potentially lead to leaks if you overwrite the commands by reloading the same or different plugins
There is no API exposed for option parsing, which means you may need to use getopt or roll-your-own
llvm-svn: 164865
Added the ability for OptionValueString objects to take flags. The only flag is currently for parsing escape sequences. Not the prompt string can have escape characters translate which will allow colors in the prompt.
Added functions to Args that will parse the escape sequences in a string, and also re-encode the escape sequences for display. This was looted from other parts of LLDB (the Debugger::FormatString() function).
llvm-svn: 163043
Make breakpoint setting by file and line much more efficient by only looking for inlined breakpoint locations if we are setting a breakpoint in anything but a source implementation file. Implementing this complex for a many reasons. Turns out that parsing compile units lazily had some issues with respect to how we need to do things with DWARF in .o files. So the fixes in the checkin for this makes these changes:
- Add a new setting called "target.inline-breakpoint-strategy" which can be set to "never", "always", or "headers". "never" will never try and set any inlined breakpoints (fastest). "always" always looks for inlined breakpoint locations (slowest, but most accurate). "headers", which is the default setting, will only look for inlined breakpoint locations if the breakpoint is set in what are consudered to be header files, which is realy defined as "not in an implementation source file".
- modify the breakpoint setting by file and line to check the current "target.inline-breakpoint-strategy" setting and act accordingly
- Modify compile units to be able to get their language and other info lazily. This allows us to create compile units from the debug map and not have to fill all of the details in, and then lazily discover this information as we go on debuggging. This is needed to avoid parsing all .o files when setting breakpoints in implementation only files (no inlines). Otherwise we would need to parse the .o file, the object file (mach-o in our case) and the symbol file (DWARF in the object file) just to see what the compile unit was.
- modify the "SymbolFileDWARFDebugMap" to subclass lldb_private::Module so that the virtual "GetObjectFile()" and "GetSymbolVendor()" functions can be intercepted when the .o file contenst are later lazilly needed. Prior to this fix, when we first instantiated the "SymbolFileDWARFDebugMap" class, we would also make modules, object files and symbol files for every .o file in the debug map because we needed to fix up the sections in the .o files with information that is in the executable debug map. Now we lazily do this in the DebugMapModule::GetObjectFile()
Cleaned up header includes a bit as well.
llvm-svn: 162860
Added a new "interpreter" properties to encapsulate any properties for the command interpreter. Right now this contains only "expand-regex-aliases", so you can now enable (disabled by default) the echoing of the command that a regular expression alias expands to:
(lldb) b main
Breakpoint created: 1: name = 'main', locations = 1
Note that the expanded regular expression command wasn't shown by default. You can enable it if you want to:
(lldb) settings set interpreter.expand-regex-aliases true
(lldb) b main
breakpoint set --name 'main'
Breakpoint created: 1: name = 'main', locations = 1
Also enabled auto completion for enumeration option values (OptionValueEnumeration) and for boolean option values (OptionValueBoolean).
Fixed auto completion for settings names when nothing has been type (it should show all settings).
llvm-svn: 162418
- no setting auto completion
- very manual and error prone way of getting/setting variables
- tons of code duplication
- useless instance names for processes, threads
Now settings can easily be defined like option values. The new settings makes use of the "OptionValue" classes so we can re-use the option value code that we use to set settings in command options. No more instances, just "does the right thing".
llvm-svn: 162366
the expression returns nothing. There is now a
setting, "notify-void." When the user enables
that setting, lldb prints (void) if an expression's
result is void. Otherwise, lldb is silent.
<rdar://problem/11225150>
llvm-svn: 161600
Make sure our debugger STDIN read thread shuts down quickly when we are done with it. We had a case where the owner of the file handle was not closing it and caused spins.
llvm-svn: 156879
Just call SBDebugger::SetTerminalWidth on the driver's SBDebugger, which does the same job, but no locks.
Also add the value checking to SetTerminalWidth you get with SetInternalVariable(..., "term-width", ...).
rdar://problem/11310563
llvm-svn: 155665
A new setting enable-synthetic-value is provided on the target to disable this behavior.
There also is a new GetNonSyntheticValue() API call on SBValue to go back from synthetic to non-synthetic. There is no call to go from non-synthetic to synthetic.
The test suite has been changed accordingly.
Fallout from changes to type searching: an hack has to be played to make it possible to use maps that contain std::string due to the special name replacement operated by clang
Fixing a test case that was using libstdcpp instead of libc++ - caught as a consequence of said changes to type searching
llvm-svn: 153495
Changes to synthetic children:
- the update(self): function can now (optionally) return a value - if it returns boolean value True, ValueObjectSyntheticFilter will not clear its caches across stop-points
this should allow better performance for Python-based synthetic children when one can be sure that the child ValueObjects have not changed
- making a difference between a synthetic VO and a VO with a synthetic value: now a ValueObjectSyntheticFilter will not return itself as its own synthetic value, but will (correctly)
claim to itself be synthetic
- cleared up the internal synthetic children architecture to make a more consistent use of pointers and references instead of shared pointers when possible
- major cleanup of unnecessary #include, data and functions in ValueObjectSyntheticFilter itself
- removed the SyntheticValueType enum and replaced it with a plain boolean (to which it was equivalent in the first place)
Some clean ups to the summary generation code
Centralized the code that clears out user-visible strings and data in ValueObject
More efficient summaries for libc++ containers
llvm-svn: 153061
This fix really needed to happen as a previous fix I had submitted for
calculating symbol sizes made many symbols appear to have zero size since
the function that was calculating the symbol size was calling another function
that would cause the calculation to happen again. This resulted in some symbols
having zero size when they shouldn't. This could then cause infinite stack
traces and many other side affects.
llvm-svn: 152244
internals. The first part of this is to use a new class:
lldb_private::ExecutionContextRef
This class holds onto weak pointers to the target, process, thread and frame
and it also contains the thread ID and frame Stack ID in case the thread and
frame objects go away and come back as new objects that represent the same
logical thread/frame.
ExecutionContextRef objcets have accessors to access shared pointers for
the target, process, thread and frame which might return NULL if the backing
object is no longer available. This allows for references to persistent program
state without needing to hold a shared pointer to each object and potentially
keeping that object around for longer than it needs to be.
You can also "Lock" and ExecutionContextRef (which contains weak pointers)
object into an ExecutionContext (which contains strong, or shared pointers)
with code like
ExecutionContext exe_ctx (my_obj->GetExectionContextRef().Lock());
llvm-svn: 150801
New public API for handling formatters: creating, deleting, modifying categories, and formatters, and managing type/formatter association.
This provides SB classes for each of the main object types involved in providing formatter support:
SBTypeCategory
SBTypeFilter
SBTypeFormat
SBTypeSummary
SBTypeSynthetic
plus, an SBTypeNameSpecifier class that is used on the public API layer to abstract the notion that formatters can be applied to plain type-names as well as to regular expressions
For naming consistency, this patch also renames a lot of formatters-related classes.
Plus, the changes in how flags are handled that started with summaries is now extended to other classes as well. A new enum (lldb::eTypeOption) is meant to support this on the public side.
The patch also adds several new calls to the formatter infrastructure that are used to implement by-index accessing and several other design changes required to accommodate the new API layer.
An architectural change is introduced in that backing objects for formatters now become writable. On the public API layer, CoW is implemented to prevent unwanted propagation of changes.
Lastly, there are some modifications in how the "default" category is constructed and managed in relation to other categories.
llvm-svn: 150558
frames might go away (the object itself, not the actual logical frame) when
we are single stepping due to the way we currently sometimes end up flushing
frames when stepping in/out/over. They later will come back to life
represented by another object yet they have the same StackID. Now when you get
a lldb::SBFrame object, it will track the frame it is initialized with until
the thread goes away or the StackID no longer exists in the stack for the
thread it was created on. It uses a weak_ptr to both the frame and thread and
also stores the StackID. These three items allow us to determine when the
stack frame object has gone away (the weak_ptr will be NULL) and allows us to
find the correct frame again. In our test suite we had such cases where we
were just getting lucky when something like this happened:
1 - stop at breakpoint
2 - get first frame in thread where we stopped
3 - run an expression that causes the program to JIT and run code
4 - run more expressions on the frame from step 2 which was very very luckily
still around inside a shared pointer, yet, not part of the current
thread (a new stack frame object had appeared with the same stack ID and
depth).
We now avoid all such issues and properly keep up to date, or we start
returning errors when the frame doesn't exist and always responds with
invalid answers.
Also fixed the UserSettingsController (not going to rewrite this just yet)
so that it doesn't crash on shutdown. Using weak_ptr's came in real handy to
track when the master controller has already gone away and this allowed me to
pull out the previous NotifyOwnerIsShuttingDown() patch as it is no longer
needed.
llvm-svn: 149231
due to RTTI worries since llvm and clang don't use RTTI, but I was able to
switch back with no issues as far as I can tell. Once the RTTI issue wasn't
an issue, we were looking for a way to properly track weak pointers to objects
to solve some of the threading issues we have been running into which naturally
led us back to std::tr1::weak_ptr. We also wanted the ability to make a shared
pointer from just a pointer, which is also easily solved using the
std::tr1::enable_shared_from_this class.
The main reason for this move back is so we can start properly having weak
references to objects. Currently a lldb_private::Thread class has a refrence
to its parent lldb_private::Process. This doesn't work well when we now hand
out a SBThread object that contains a shared pointer to a lldb_private::Thread
as this SBThread can be held onto by external clients and if they end up
using one of these objects we can easily crash.
So the next task is to start adopting std::tr1::weak_ptr where ever it makes
sense which we can do with lldb_private::Debugger, lldb_private::Target,
lldb_private::Process, lldb_private::Thread, lldb_private::StackFrame, and
many more objects now that they are no longer using intrusive ref counted
pointer objects (you can't do std::tr1::weak_ptr functionality with intrusive
pointers).
llvm-svn: 149207
where we grabbed the variable list size from the wrong list (we needed it
from "args" and we were getting it from "variable_list_sp").
llvm-svn: 148425
Fixed two double "int close(int fd)" issues found by our file descriptor
interposing library on darwin:
The first is in SBDebugger::SetInputFileHandle (FILE *file, bool transfer_ownership)
where we would give our FILE * to a lldb_private::File object member variable and tell
it that it owned the file descriptor if "transfer_ownership" was true, and then we
would also give it to the communication plug-in that waits for stdin to come in and
tell it that it owned the FILE *. They would both try and close the file.
The seconds was when we use a file descriptor through ConnectionFileDescriptor
where someone else is creating a connection with ConnectionFileDescriptor and a URL
like: "fd://123". We were always taking ownwership of the fd 123, when we shouldn't
be. There is a TODO in the comments that says we should allow URL options to be passed
to be able to specify this later (something like: "fd://123?transer_ownership=1"), but
we can get to this later.
llvm-svn: 148201
Switch from GetReturnValue, which was hardly ever used, to GetReturnValueObject
which is much more convenient.
Return the "return value object" as a persistent variable if requested.
llvm-svn: 147157
as part of the thread format output.
Currently this is only done for the ThreadPlanStepOut.
Add a convenience API ABI::GetReturnValueObject.
Change the ValueObject::EvaluationPoint to BE an ExecutionContextScope, rather than
trying to hand out one of its subsidiary object's pointers. That way this will always
be good.
llvm-svn: 146806
something like "display/4i $pc" (or something like this). With LLDB we already
were showing 3 lines of source before and 3 lines of source after the current
source line when showing a stop context. We now improve this by allowing the
user to control the number of lines with the new "stop-line-count-before" and
"stop-line-count-after" settings. Also, there is a new setting for how many
disassembly lines to show: "stop-disassembly-count". This will control how many
source lines are shown when there is no source or when we have no source line
info.
settings set stop-line-count-before 3
settings set stop-line-count-after 3
settings set stop-disassembly-count 4
settings set stop-disassembly-display no-source
The default values are set as shown above and allow 3 lines of source before
and after (what we used to do) the current stop location, and will display 4
lines of disassembly if the source is not available or if we have no debug
info. If both "stop-source-context-before" and "stop-source-context-after" are
set to zero, this will disable showing any source when stopped. The
"stop-disassembly-display" setting is an enumeration that allows you to control
when to display disassembly. It has 3 possible values:
"never" - never show disassembly no matter what
"no-source" - only show disassembly when there is no source line info or the source files are missing
"always" - always show disassembly.
llvm-svn: 145050
turned out to be unitialized data in the ProcessLaunchInfo default constructor.
Turning on MallocScribble in the environment helped track this down.
When we launch and attach using the host layer, we now inform the process that
it shouldn't detach when by calling an accessor.
llvm-svn: 144882
After recent changes we weren't reaping child processes resulting in many
zombie processes.
This was fixed by adding more settings to the ProcessLaunchOptions class
that allow clients to specify a callback function and baton to be notified
when their process dies. If one is not supplied a default callback will be
used that "does the right thing".
Cleaned up a race condition in the ProcessGDBRemote class that would attempt
to monitor when debugserver died.
Added an extra boolean to the process monitor callbacks that indicate if a
process exited or not. If your process exited with a zero exit status and no
signal, both items could be zero.
Modified the process monitor functions to not require a callback function
in order to reap the child process.
llvm-svn: 144780
lldb_private::Error objects the rules are:
- short strings that don't start with a capitol letter unless the name is a
class or anything else that is always capitolized
- no trailing newline character
- should be one line if possible
Implemented a first pass at adding "--gdb-format" support to anything that
accepts format with optional size/count.
llvm-svn: 142999
process IDs, and thread IDs, but was mainly needed for for the UserID's for
Types so that DWARF with debug map can work flawlessly. With DWARF in .o files
the type ID was the DIE offset in the DWARF for the .o file which is not
unique across all .o files, so now the SymbolFileDWARFDebugMap class will
make the .o file index part (the high 32 bits) of the unique type identifier
so it can uniquely identify the types.
llvm-svn: 142534
inserted in commands by using backticks:
(lldb) memory read `$rsp-16` `$rsp+16`
(lldb) memory read -c `(int)strlen(argv[0])` `argv[0]`
The result of the expression will be inserted into the command as a sort of
preprocess stage where this gets done first. We might need to tweak where this
preprocess stage goes, but it is very functional already.
Added ansi color support to the Debugger::FormatPrompt() so you can use things
like "${ansi.fg.blue}" and "${ansi.bold}" many more. This helps in adding
colors to your prompts without needing to know the ANSI color code strings.
llvm-svn: 141948
symbol context that represents an inlined function. This function has been
renamed internally to:
bool
SymbolContext::GetParentOfInlinedScope (const Address &curr_frame_pc,
SymbolContext &next_frame_sc,
Address &next_frame_pc) const;
And externally to:
SBSymbolContext
SBSymbolContext::GetParentOfInlinedScope (const SBAddress &curr_frame_pc,
SBAddress &parent_frame_addr) const;
The correct blocks are now correctly calculated.
Switched the stack backtracing engine (in StackFrameList) and the address
context printing over to using the internal SymbolContext::GetParentOfInlinedScope(...)
so all inlined callstacks will match exactly.
llvm-svn: 140910
shared pointers.
Changed the ExecutionContext over to use shared pointers for
the target, process, thread and frame since these objects can
easily go away at any time and any object that was holding onto
an ExecutionContext was running the risk of using a bad object.
Now that the shared pointers for target, process, thread and
frame are just a single pointer (they all use the instrusive
shared pointers) the execution context is much safer and still
the same size.
Made the shared pointers in the the ExecutionContext class protected
and made accessors for all of the various ways to get at the pointers,
references, and shared pointers.
llvm-svn: 140298
stdarg formats to use __attribute__ format so the compiler can flag
incorrect uses. Fix all incorrect uses. Most of these are innocuous,
a few were resulting in crashes.
llvm-svn: 140185
Set the default Source File & line to main (if it can be found.) at startup. Selecting the current thread & or frame resets
the current source file & line, and "source list" as well as the breakpoint command "break set -l <NUM>" will use the
current source file.
llvm-svn: 139323
Renamed format "signed decimal" to be "decimal". "unsigned decimal" remains unchanged:
- the name "signed decimal" was interfering with symbol %S (use summary) in summary strings.
because of the way summary strings are implemented, this did not really lead to a bug, but
simply to performing more steps than necessary to display a summary. this is fixed.
Documentation improvements (more on synthetic children, some information on filters). This is still a WIP.
llvm-svn: 138384
e.g. you may get "foo_class @ 0x123456" when typing "type summary add -f ${var} foo_class"
- Added a new special formatting token %T for summaries. This shows the type of the object.
Using it, the new "type @ location" summary could be manually generated by writing ${var%T} @ ${var%L}
- Bits and pieces required to support "frame variable array[n-m]"
The feature is not enabled yet because some additional design and support code is required, but the basics
are getting there
- Fixed a potential issue where a ValueObjectSyntheticFilter was not holding on to its SyntheticChildrenSP
Because of the way VOSF are being built now, this has never been an actual issue, but it is still sensible for
a VOSF to hold on to the SyntheticChildrenSP as well as to its FrontEnd
llvm-svn: 138080
- reorganizing classes layout to have public part first
Typedefs that we want to keep private, but must be defined for some public code to work correctly are an exception
- avoiding methods in the form T foo() { code; } all on one-line
- moving method implementations from .h to .cpp whenever feasible
Templatized code is an exception and so are very small methods
- generally, adhering to coding conventions followed project-wide
Functional changes:
- fixed an issue where using ${var} in a summary for an aggregate, and then displaying a pointer-to-aggregate would lead to no summary being displayed
The issue was not a major one because all ${var} was meant to do in that context was display an error for invalid use of pointer
Accordingly fixed test cases and added a new test case
llvm-svn: 137944
- all instances of "vobj" have been renamed to "valobj"
- class Debugger::Formatting has been renamed to DataVisualization (defined in FormatManager.h/cpp)
The interface to this class has not changed
- FormatCategory now uses ConstString's as keys to the navigators instead of repeatedly casting
from ConstString to const char* and back all the time
Next step is making the same happen for categories themselves
- category gnu-libstdc++ is defined in the constructor for a FormatManager
The source code for it is defined in gnu_libstdcpp.py, drawn from examples/synthetic at compile time
All references to previous 'osxcpp' name have been removed from both code and file names
Functional changes:
- the name of the option to use a summary string for 'type summary add' has changed from the previous --format-string
to the new --summary-string. It is expected that the short option will change from -f to -s, and -s for --python-script
will become -o
llvm-svn: 137886
The category is enabled by default. If you run into issues with it, disable it and the previous behavior of LLDB is restored
** This is a temporary solution. The general solution to having formatters pulled in at startup should involve going through the Platform.
Fixed an issue in type synthetic list where a category with synthetic providers in it was not shown if all the providers were regex-based
llvm-svn: 137850
The converse is also true: an error is shown when the user tries to add a synthetic provider to a category that already has a filter for the same type
llvm-svn: 137493
*New setting target.max-children-count gives an upper-bound to the number of child objects that will be displayed at each depth-level
This might be a breaking change in some scenarios. To override the new limit you can use the --show-all-children (-A) option
to frame variable or increase the limit in your lldbinit file
*Command "type synthetic" has been split in two:
- "type synthetic" now only handles Python synthetic children providers
- the new command "type filter" handles filters
Because filters and synthetic providers are both ways to replace the children of a ValueObject, only one can be effective at any given time.
llvm-svn: 137416
Access to synthetic children by name:
if your object has a synthetic child named foo you can now type
frame variable object.foo (or ->foo if you have a pointer)
and that will print the value of the synthetic child
(if your object has an actual child named foo, the actual child prevails!)
this behavior should also work in summaries, and you should be able to use
${var.foo} and ${svar.foo} interchangeably
(but using svar.foo will mask an actual child named foo)
llvm-svn: 137314
This is helping us track down some extra references to ModuleSP objects that
are causing things to get kept around for too long.
Added a module pointer accessor to target and change a lot of code to use
it where it would be more efficient.
"taret delete" can now specify "--clean=1" which will cleanup the global module
list for any orphaned module in the shared module cache which can save memory
and also help track down module reference leaks like we have now.
llvm-svn: 137294
- accordingly, the test cases for the synthetic providers for the std:: containers have been edited to use
${svar%#} instead of ${svar.len} to print out the count of elements ; the .len synthetic child has been
removed from the synthetic providers
The synthetic children providers for the std:: containers now return None when asked for children indexes >= num_children()
Basic code to support filter names based on regular expressions (WIP)
llvm-svn: 136862
Fixed a bug where Objective-C variables coming out of the expression parser could crash the Python synthetic providers:
- expression parser output has a "frozen data" component, which is a byte-exact copy of the value (in host memory),
if trying to read into memory based on the host address, LLDB would crash. we are now passing the correct (target)
pointer to the Python code
Objective-C "id" variables are now formatted according to their dynamic type, if the -d option to frame variable is used:
- Code based on the Objective-C 2.0 runtime is used to obtain this information without running code on the target
llvm-svn: 136695
- Completely new implementation of SBType
- Various enhancements in several other classes
Python synthetic children providers for std::vector<T>, std::list<T> and std::map<K,V>:
- these return the actual elements into the container as the children of the container
- basic template name parsing that works (hopefully) on both Clang and GCC
- find them in examples/synthetic and in the test suite in functionalities/data-formatter/data-formatter-python-synth
New summary string token ${svar :
- the syntax is just the same as in ${var but this new token lets you read the values
coming from the synthetic children provider instead of the actual children
- Python providers above provide a synthetic child len that returns the number of elements
into the container
Full bug fix for the issue in which getting byte size for a non-complete type would crash LLDB
Several other fixes, including:
- inverted the order of arguments in the ClangASTType constructor
- EvaluationPoint now only returns SharedPointer's to Target and Process
- the help text for several type subcommands now correctly indicates argument-less options as such
llvm-svn: 136504
- you can now define a Python class as a synthetic children producer for a type
the class must adhere to this "interface":
def __init__(self, valobj, dict):
def get_child_at_index(self, index):
def get_child_index(self, name):
then using type synth add -l className typeName
(e.g. type synth add -l fooSynthProvider foo)
(This is still WIP with lots to be added)
A small test case is available also as reference
llvm-svn: 135865
(e.g. ${var%S}). this might already be the default if your variable is of an aggregate type
new feature: synthetic filters. you can restrict the number of children for your variables to only a meaningful subset
- the restricted list of children obeys the typical rules (e.g. summaries prevail over children)
- one-line summaries show only the filtered (synthetic) children, if you type an expanded summary string, or you use Python scripts, all the real children are accessible
- to provide a synthetic children list use the "type synth add" command, as in:
type synth add foo_type --child varA --child varB[0] --child varC->packet->flags[1-4]
(you can use ., ->, single-item array operator [N] and bitfield operator [N-M]; array slice access is not supported, giving simplified names to expression paths is not supported)
- a new -S option to frame variable and target variable lets you override synthetic children and instead show real ones
llvm-svn: 135731
Code cleanup:
- The Format Manager implementation is now split between two files: FormatClasses.{h|cpp} where the
actual formatter classes (ValueFormat, SummaryFormat, ...) are implemented and
FormatManager.{h|cpp} where the infrastructure classes (FormatNavigator, FormatManager, ...)
are contained. The wrapper code always remains in Debugger.{h|cpp}
- Several leftover fields, methods and comments from previous design choices have been removed
type category subcommands (enable, disable, delete) now can take a list of category names as input
- for type category enable, saying "enable A B C" is the same as saying
enable C
enable B
enable A
(the ordering is relevant in enabling categories, and it is expected that a user typing
enable A B C wants to look into category A, then into B, then into C and not the other
way round)
- for the other two commands, the order is not really relevant (however, the same inverted ordering
is used for consistency)
llvm-svn: 135494
The "systemwide summaries" feature has been removed and replaced with a more general and
powerful mechanism.
Categories:
- summaries can now be grouped into buckets, called "categories" (it is expected that categories
correspond to libraries and/or runtime environments)
- to add a summary to a category, you can use the -w option to type summary add and give
a category name (e.g. type summary add -f "foo" foo_t -w foo_category)
- categories are by default disabled, which means LLDB will not look into them for summaries,
to enable a category use "type category enable". once a category is enabled, LLDB will
look into that category for summaries. the rules are quite trivial: every enabled category
is searched for an exact match. if an exact match is nowhere to be found, any match is
searched for in every enabled category (whether it involves cascading, going to base classes,
...). categories are searched into the order in which they were enabled (the most recently
enabled category first, then the second most and so on..)
- by default, most commands that deal with summaries, use a category named "default" if no
explicit -w parameter is given (the observable behavior of LLDB should not change when
categories are not explicitly used)
- the systemwide summaries are now part of a "system" category
llvm-svn: 135463
- Summaries for char*, const char* and char[] are loaded at startup as
system-wide summaries. This means you cannot delete them unless you use
the -a option to type summary delete/clear
- You can add your own system-wide summaries by using the -w option to type
summary add
Several code improvements for the Python summaries feature
llvm-svn: 135326
- you can use a Python script to write a summary string for data-types, in one of
three ways:
-P option and typing the script a line at a time
-s option and passing a one-line Python script
-F option and passing the name of a Python function
these options all work for the "type summary add" command
your Python code (if provided through -P or -s) is wrapped in a function
that accepts two parameters: valobj (a ValueObject) and dict (an LLDB
internal dictionary object). if you use -F and give a function name,
you're expected to define the function on your own and with the right
prototype. your function, however defined, must return a Python string
- test case for the Python summary feature
- a few quirks:
Python summaries cannot have names, and cannot use regex as type names
both issues will be fixed ASAP
major redesign of type summary code:
- type summary working with strings and type summary working with Python code
are two classes, with a common base class SummaryFormat
- SummaryFormat classes now are able to actively format objects rather than
just aggregating data
- cleaner code to print descriptions for summaries
the public API now exports a method to easily navigate a ValueObject hierarchy
New InputReaderEZ and PriorityPointerPair classes
Several minor fixes and improvements
llvm-svn: 135238
- formats %s %char[] %c and %a now work to print 0-terminated c-strings if they are applied to a char* or char[] even without the [] operator (e.g. ${var%s})
- array formats (char[], intN[], ..) now work when applied to an array of a scalar type even without the [] operator (e.g. ${var%int32_t[]})
LLDB will not crash because of endless loop when trying to obtain a summary for an object that has no value and references itself in its summary string
In many cases, a wrong summary string will now display an "<error>" message instead of giving out an empty string
llvm-svn: 135007
- a new --name option for "type summary add" lets you give a name to a summary
- a new --summary option for "frame variable" lets you bind a named summary to one or more variables
${var%s} now works for printing the value of 0-terminated CStrings
type format test case now tests for cascading
- this is disabled on GCC because GCC may end up stripping typedef chains, basically breaking cascading
new design for the FormatNavigator class
new template class CleanUp2 meant to support cleanup routines with 1 additional parameter beyond resource handle
llvm-svn: 134943
new GetValueForExpressionPath() method in ValueObject to navigate expression paths in a more bitfield vs slices aware way
changes to the varformats.html document (WIP)
llvm-svn: 134679
instructions if they are conditional. Also fixed issues where the PC wasn't
getting bit zero stripped for ARM targets when a stack frame was thumb. We
now properly call through the GetOpcodeLoadAddress() functions to make sure
the addresses are properly stripped for any targets that may decorate up
their addresses.
We now don't pass the SIGSTOP signals along. We can revisit this soon, but
currently this was interfering with debugging some older ARM targets that
don't have vCont support in the GDB server.
llvm-svn: 134461
- ${*expr} now simply means to dereference expr before actually using it
- bitfields, array ranges and pointer ranges now work in a (hopefully) more natural and language-compliant way
a new class TypeHierarchyNavigator replicates the behavior of the FormatManager in going through type hierarchies
when one-lining summary strings, children's summaries can be used as well as values
llvm-svn: 134458
- type names can now be regular expressions (exact matching is done first, and is faster)
- integral (and floating) types can be printed as bitfields, i.e. ${var[low-high]} will extract bits low thru high of the value and print them
- array subscripts are supported, both for arrays and for pointers. the syntax is ${*var[low-high]}, or ${*var[]} to print the whole array (the latter only works for statically sized arrays)
- summary is now printed by default when a summary string references a variable. if that variable's type has no summary, value is printed instead. to force value, you can use %V as a format specifier
- basic support for ObjectiveC:
- ObjectiveC inheritance chains are now walked through
- %@ can be specified as a summary format, to print the ObjectiveC runtime description for an object
- some bug fixes
llvm-svn: 134293
implements three commands:
type summary add <format> <typename1> [<typename2> ...]
type summary delete <typename1> [<typename2> ...]
type summary list [<typename1> [<typename2>] ...]
type summary clear
This allows you to specify the default format that will be used to display
summaries for variables, shown when you use "frame variable" or "expression", or the SBValue classes.
Examples:
type summary add "x = ${var.x}" Point
type summary list
type summary add --one-liner SimpleType
llvm-svn: 134108
the FormatManager class. Modified the format arguments in any commands to be
able to use a single character format, or a full format name, or a partial
format name if no full format names match.
Modified any code that was displaying formats to use the new FormatManager
calls so that our help text and errors never get out of date.
Modified the display of the "type format list" command to be a bit more
human readable by showing the format as a format string rather than the single
character format char.
llvm-svn: 133765
This commit adds a new top level command named "type". Currently this command
implements three commands:
type format add <format> <typename1> [<typename2> ...]
type format delete <typename1> [<typename2> ...]
type format list [<typename1> [<typename2>] ...]
This allows you to specify the default format that will be used to display
types when you use "frame variable" or "expression", or the SBValue classes.
Examples:
// Format uint*_t as hex
type format add x uint16_t uint32_t uint64_t
// Format intptr_t as a pointer
type format add p intptr_t
The format characters are the same as "printf" for the most part with many
additions. These format character specifiers are also used in many other
commands ("frame variable" for one). The current list of format characters
include:
a - char buffer
b - binary
B - boolean
c - char
C - printable char
d - signed decimal
e - float
f - float
g - float
i - signed decimal
I - complex integer
o - octal
O - OSType
p - pointer
s - c-string
u - unsigned decimal
x - hex
X - complex float
y - bytes
Y - bytes with ASCII
llvm-svn: 133728
not write output (prompts, instructions,etc.) if the CommandInterpreter
is in batch_mode.
Also, finish updating InputReaders to write to the asynchronous stream,
rather than using the Debugger's output file directly.
llvm-svn: 133162
(or anything running in a terminal) wants. Not what a UI (Xcode) would want
where it creates a debugger per debug window. The current code had an infinite
loop after a debug session ended.
llvm-svn: 132280
the appropriate registers for arm and x86_64. The register names for the
arguments that are the size of a pointer or less are all named "arg1", "arg2",
etc. This allows you to read these registers by name:
(lldb) register read arg1 arg2 arg3
...
You can also now specify you want to see alternate register names when executing
the read register command:
(lldb) register read --alternate
(lldb) register read -A
llvm-svn: 131376
into some cleanup I have been wanting to do when reading/writing registers.
Previously all RegisterContext subclasses would need to implement:
virtual bool
ReadRegisterBytes (uint32_t reg, DataExtractor &data);
virtual bool
WriteRegisterBytes (uint32_t reg, DataExtractor &data, uint32_t data_offset = 0);
There is now a new class specifically designed to hold register values:
lldb_private::RegisterValue
The new register context calls that subclasses must implement are:
virtual bool
ReadRegister (const RegisterInfo *reg_info, RegisterValue ®_value) = 0;
virtual bool
WriteRegister (const RegisterInfo *reg_info, const RegisterValue ®_value) = 0;
The RegisterValue class must be big enough to handle any register value. The
class contains an enumeration for the value type, and then a union for the
data value. Any integer/float values are stored directly in an appropriate
host integer/float. Anything bigger is stored in a byte buffer that has a length
and byte order. The RegisterValue class also knows how to copy register value
bytes into in a buffer with a specified byte order which can be used to write
the register value down into memory, and this does the right thing when not
all bytes from the register values are needed (getting a uint8 from a uint32
register value..).
All RegiterContext and other sources have been switched over to using the new
regiter value class.
llvm-svn: 131096
command line driver, including the lldb prompt being output by
editline, the asynchronous process output & error messages, and
asynchronous messages written by target stop-hooks.
As part of this it introduces a new Stream class,
StreamAsynchronousIO. A StreamAsynchronousIO object is created with a
broadcaster, who will eventually broadcast the stream's data for a
listener to handle, and an event type indicating what type of event
the broadcaster will broadcast. When the Write method is called on a
StreamAsynchronousIO object, the data is appended to an internal
string. When the Flush method is called on a StreamAsynchronousIO
object, it broadcasts it's data string and clears the string.
Anything in lldb-core that needs to generate asynchronous output for
the end-user should use the StreamAsynchronousIO objects.
I have also added a new notification type for InputReaders, to let
them know that a asynchronous output has been written. This is to
allow the input readers to, for example, refresh their prompts and
lines, if desired. I added the case statements to all the input
readers to catch this notification, but I haven't added any code for
handling them yet (except to the IOChannel input reader).
llvm-svn: 130721
set by default when dumping registers. If you want to see all of the register
sets you can use the "--all" option:
(lldb) register read --all
If you want to just see some register sets, you can currently specify them
by index:
(lldb) register read --set 0 --set 2
We need to get shorter register set names soon so we can specify the register
sets by name without having to type too much. I will make this change soon.
You can also have any integer encoded registers resolve the address values
back to any code or data from the object files using the "--lookup" option.
Below is sample output when stopped in the libc function "puts" with some
const strings in registers:
Process 8973 stopped
* thread #1: tid = 0x2c03, 0x00007fff828fa30f libSystem.B.dylib`puts + 1, stop reason = instruction step into
frame #0: 0x00007fff828fa30f libSystem.B.dylib`puts + 1
(lldb) register read --lookup
General Purpose Registers:
rax = 0x0000000100000e98 "----------------------------------------------------------------------"
rbx = 0x0000000000000000
rcx = 0x0000000000000001
rdx = 0x0000000000000000
rdi = 0x0000000100000e98 "----------------------------------------------------------------------"
rsi = 0x0000000100800000
rbp = 0x00007fff5fbff710
rsp = 0x00007fff5fbff280
r8 = 0x0000000000000040
r9 = 0x0000000000000000
r10 = 0x0000000000000000
r11 = 0x0000000000000246
r12 = 0x0000000000000000
r13 = 0x0000000000000000
r14 = 0x0000000000000000
r15 = 0x0000000000000000
rip = 0x00007fff828fa30f libSystem.B.dylib`puts + 1
rflags = 0x0000000000000246
cs = 0x0000000000000027
fs = 0x0000000000000000
gs = 0x0000000000000000
As we can see, we see two constant strings and the PC (register "rip") is
showing the code it resolves to.
I fixed the register "--format" option to work as expected.
Added a setting to disable skipping the function prologue when setting
breakpoints as a target settings variable:
(lldb) settings set target.skip-prologue false
Updated the user settings controller boolean value handler funciton to be able
to take the default value so it can correctly respond to the eVarSetOperationClear
operation.
Did some usability work on the OptionValue classes.
Fixed the "image lookup" command to correctly respond to the "--verbose"
option and display the detailed symbol context information when looking up
line table entries and functions by name. This previously was only working
for address lookups.
llvm-svn: 129977
the CommandInterpreter where it was always being used.
Make sure that Modules can track their object file offsets correctly to
allow opening of sub object files (like the "__commpage" on darwin).
Modified the Platforms to be able to launch processes. The first part of this
move is the platform soon will become the entity that launches your program
and when it does, it uses a new ProcessLaunchInfo class which encapsulates
all process launching settings. This simplifies the internal APIs needed for
launching. I want to slowly phase out process launching from the process
classes, so for now we can still launch just as we used to, but eventually
the platform is the object that should do the launching.
Modified the Host::LaunchProcess in the MacOSX Host.mm to correctly be able
to launch processes with all of the new eLaunchFlag settings. Modified any
code that was manually launching processes to use the Host::LaunchProcess
functions.
Fixed an issue where lldb_private::Args had implicitly defined copy
constructors that could do the wrong thing. This has now been fixed by adding
an appropriate copy constructor and assignment operator.
Make sure we don't add empty ModuleSP entries to a module list.
Fixed the commpage module creation on MacOSX, but we still need to train
the MacOSX dynamic loader to not get rid of it when it doesn't have an entry
in the all image infos.
Abstracted many more calls from in ProcessGDBRemote down into the
GDBRemoteCommunicationClient subclass to make the classes cleaner and more
efficient.
Fixed the default iOS ARM register context to be correct and also added support
for targets that don't support the qThreadStopInfo packet by selecting the
current thread (only if needed) and then sending a stop reply packet.
Debugserver can now start up with a --unix-socket (-u for short) and can
then bind to port zero and send the port it bound to to a listening process
on the other end. This allows the GDB remote platform to spawn new GDB server
instances (debugserver) to allow platform debugging.
llvm-svn: 129351
public types and public enums. This was done to keep the SWIG stuff from
parsing all sorts of enums and types that weren't needed, and allows us to
abstract our API better.
llvm-svn: 128239
platform status -- gets status information for the selected platform
platform create <platform-name> -- creates a new instance of a remote platform
platform list -- list all available platforms
platform select -- select a platform instance as the current platform (not working yet)
When using "platform create" it will create a remote platform and make it the
selected platform. For instances for iPhone OS debugging on Mac OS X one can
do:
(lldb) platform create remote-ios --sdk-version=4.0
Remote platform: iOS platform
SDK version: 4.0
SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0"
Not connected to a remote device.
(lldb) file ~/Documents/a.out
Current executable set to '~/Documents/a.out' (armv6).
(lldb) image list
[ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out
[ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld
[ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib
Note that this is all happening prior to running _or_ connecting to a remote
platform. Once connected to a remote platform the OS version might change which
means we will need to update our dependecies. Also once we run, we will need
to match up the actualy binaries with the actualy UUID's to files in the
SDK, or download and cache them locally.
This is just the start of the remote platforms, but this modification is the
first iteration in getting the platforms really doing something.
llvm-svn: 127934
correct order. Previously this was tacitly implemented but not
enforced, so it was possible to accidentally do things in the wrong
order and cause problems. This fixes that problem.
llvm-svn: 127430
of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up
doing was:
- Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics
the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple
to give us the machine type from llvm::Triple::ArchType.
- There is a new ArchSpec::Core definition which further qualifies the CPU
core we are dealing with into a single enumeration. If you need support for
a new Core and want to debug it in LLDB, it must be added to this list. In
the future we can allow for dynamic core registration, but for now it is
hard coded.
- The ArchSpec can now be initialized with a llvm::Triple or with a C string
that represents the triple (it can just be an arch still like "i386").
- The ArchSpec can still initialize itself with a architecture type -- mach-o
with cpu type and subtype, or ELF with e_machine + e_flags -- and this will
then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core.
The mach-o cpu type and subtype can be accessed using the getter functions:
uint32_t
ArchSpec::GetMachOCPUType () const;
uint32_t
ArchSpec::GetMachOCPUSubType () const;
But these functions are just converting out internal llvm::Triple::ArchSpec
+ ArchSpec::Core back into mach-o. Same goes for ELF.
All code has been updated to deal with the changes.
This should abstract us until later when the llvm::TargetSpec stuff gets
finalized and we can then adopt it.
llvm-svn: 126278
now, in addition to cpu type/subtype and architecture flavor, contains:
- byte order (big endian, little endian)
- address size in bytes
- llvm::Triple for true target triple support and for more powerful plug-in
selection.
llvm-svn: 125602
where the implementation is hidden in the host layer. This avoids
a slew of "#if LLDB_CONFIG_TERMIOS_SUPPORTED" statements in the
code and keeps things cleaner.
llvm-svn: 125057
#include "lldb/Host/Config.h"
Or the LLDB_CONFIG_TERMIOS_SUPPORTED defined won't be set. I will fix all
of this Termios stuff later today by moving lldb/Core/TTYState.* into the
host layer and then we conditionalize all of this inside TTYState.cpp and
then we get rid of LLDB_CONFIG_TERMIOS_SUPPORTED all together.
Typically, when we start to see too many "#if LLDB_CONFIG_XXXX" preprocessor
directives, this is a good indicator that something needs to be moved over to
the host layer. TTYState can be modified to do all of the things that many
areas of the code are currently doing, and it will avoid all of the
preprocessor noise.
llvm-svn: 125027
allowing timeouts & informing the user when the lock is unavailable.
Fixed problem where Debugger::Terminate was clearing the debugger list
even when the global ref count was greater than zero.
llvm-svn: 123674
exist within the same process (one script interpreter object per debugger object). The
python script interpreter objects are all using the same global Python script interpreter;
they use separate dictionaries to keep their data separate, and mutex's to prevent any object
attempting to use the global Python interpreter when another object is already using it.
llvm-svn: 123415
an issue with the way the UnwindLLDB was handing out RegisterContexts: it
was making shared pointers to register contexts and then handing out just
the pointers (which would get put into shared pointers in the thread and
stack frame classes) and cause double free issues. MallocScribble helped to
find these issues after I did some other cleanup. To help avoid any
RegisterContext issue in the future, all code that deals with them now
returns shared pointers to the register contexts so we don't end up with
multiple deletions. Also now that the RegisterContext class doesn't require
a stack frame, we patched a memory leak where a StackFrame object was being
created and leaked.
Made the RegisterContext class not have a pointer to a StackFrame object as
one register context class can be used for N inlined stack frames so there is
not a 1 - 1 mapping. Updates the ExecutionContextScope part of the
RegisterContext class to never return a stack frame to indicate this when it
is asked to recreate the execution context. Now register contexts point to the
concrete frame using a concrete frame index. Concrete frames are all of the
frames that are actually formed on the stack of a thread. These concrete frames
can be turned into one or more user visible frames due to inlining. Each
inlined stack frame has the exact same register context (shared via shared
pointers) as any parent inlined stack frames all the way up to the concrete
frame itself.
So now the stack frames and the register contexts should behave much better.
llvm-svn: 122976
a Debugger object is destroyed or re-set. (Thus making sure that, for
example, the Python interpreter finishes and exits cleanly rather than
being left in an undefined state.)
llvm-svn: 122255
do. Closing on EOF is an option that can be set on the
lldb_private::Communication or the lldb::SBCommunication objects after they
are created. Of course the EOF support isn't hooked up, so they don't do
anything at the moment, but they are left in so when the code is fixed, it
will be easy to get working again.
llvm-svn: 120885
was done as an settings variable in the process for now. We will eventually
move all environment stuff over to the target, but we will leave it with the
process for now. The default setting is for a process to inherit the host
environment. This can be disabled by setting the "inherit-env" setting to
false in the process.
llvm-svn: 120862
Add bool member to Communication class indicating whether the
Connection should be closed on receiving an EOF or not. Update the
Connection read to return an EOF status when appropriate. Modify the
Communication class to pass the EOF along or not, and to close the
Connection or not, as appropriate.
llvm-svn: 120723
changing it to use it. There was an extra parameter added to the static
accessor global user settings controllers that wasn't needed. A bool was being
used as a parameter to the accessor just so it could be used to clean up
the global user settings controller which is now fixed by splitting up the
initialization into the "static void Class::Initialize()", access into the
"static UserSettingsControllerSP & Class::GetSettingsController()", and
cleanup into "static void Class::Terminate()".
Also added initialize and terminate calls to the logging code to avoid issues
when LLDB is shutting down. There were cases after the logging was switched
over to use shared pointers where we could crash if the global destructor
chain was being run and it causes the log to be destroyed and any any logging
occurred.
llvm-svn: 119757
ReadThread stuff into the main Process class (out of the Process Plugins).
This has the (intended) side effect of disabling the command line tool
from reading input/commands while the process is running (the input is
directed to the running process rather than to the command interpreter).
llvm-svn: 119329
instance:
settings set frame-format <string>
settings set thread-format <string>
This allows users to control the information that is seen when dumping
threads and frames. The default values are set such that they do what they
used to do prior to changing over the the user defined formats.
This allows users with terminals that can display color to make different
items different colors using the escape control codes. A few alias examples
that will colorize your thread and frame prompts are:
settings set frame-format 'frame #${frame.index}: \033[0;33m${frame.pc}\033[0m{ \033[1;4;36m${module.file.basename}\033[0;36m ${function.name}{${function.pc-offset}}\033[0m}{ \033[0;35mat \033[1;35m${line.file.basename}:${line.number}}\033[0m\n'
settings set thread-format 'thread #${thread.index}: \033[1;33mtid\033[0;33m = ${thread.id}\033[0m{, \033[0;33m${frame.pc}\033[0m}{ \033[1;4;36m${module.file.basename}\033[0;36m ${function.name}{${function.pc-offset}}\033[0m}{, \033[1;35mstop reason\033[0;35m = ${thread.stop-reason}\033[0m}{, \033[1;36mname = \033[0;36m${thread.name}\033[0m}{, \033[1;32mqueue = \033[0;32m${thread.queue}}\033[0m\n'
A quick web search for "colorize terminal output" should allow you to see what
you can do to make your output look like you want it.
The "settings set" commands above can of course be added to your ~/.lldbinit
file for permanent use.
Changed the pure virtual
void ExecutionContextScope::Calculate (ExecutionContext&);
To:
void ExecutionContextScope::CalculateExecutionContext (ExecutionContext&);
I did this because this is a class that anything in the execution context
heirarchy inherits from and "target->Calculate (exe_ctx)" didn't always tell
you what it was really trying to do unless you look at the parameter.
llvm-svn: 115485
Added the start of Host specific launch services, though it currently isn't
hookup up to anything. We want to be able to launch a process and use the
native launch services to launch an app like it would be launched by the
user double clicking on the app. We also eventually want to be able to run
a command line app in a newly spawned terminal to avoid terminal sharing.
Fixed an issue with the new DWARF forward type declaration stuff. A crasher
was found that was happening when trying to properly expand the forward
declarations.
llvm-svn: 115213
the parent of Process settings; add 'default-arch' as a
class-wide setting for Target. Replace lldb::GetDefaultArchitecture
with Target::GetDefaultArchitecture & Target::SetDefaultArchitecture.
Add 'use-external-editor' as user setting to Debugger class & update
code appropriately.
Add Error parameter to methods that get user settings, for easier
reporting of bad requests.
Fix various other minor related bugs.
Fix test cases to work with new changes.
llvm-svn: 114352
replacing the "(lldb)" prompt, the "frame #1..." displays when doing
stack backtracing and the "thread #1....". This will allow you to see
exactly the information that you want to see where you want to see it.
This currently isn't hookup up to the prompts yet, but it will be soon.
So what is the format of the prompts? Prompts can contain variables that
have access to the current program state. Variables are text that appears
in between a prefix of "${" and ends with a "}". Some of the interesting
variables include:
// The frame index (0, 1, 2, 3...)
${frame.index}
// common frame registers with generic names
${frame.pc}
${frame.sp}
${frame.fp}
${frame.ra}
${frame.flags}
// Access to any frame registers by name where REGNAME is any register name:
${frame.reg.REGNAME}
// The current compile unit file where the frame is located
${file.basename}
${file.fullpath}
// Function information
${function.name}
${function.pc-offset}
// Process info
${process.file.basename}
${process.file.fullpath}
${process.id}
${process.name}
// Thread info
${thread.id}
${thread.index}
${thread.name}
${thread.queue}
${thread.stop-reason}
// Target information
${target.arch}
// The current module for the current frame (the shared library or executable
// that contains the current frame PC value):
${module.file.basename}
${module.file.fullpath}
// Access to the line entry for where the current frame is when your thread
// is stopped:
${line.file.basename}
${line.file.fullpath}
${line.number}
${line.start-addr}
${line.end-addr}
Many times the information that you might have in your prompt might not be
available and you won't want it to print out if it isn't valid. To take care
of this you can enclose everything that must resolve into a scope. A scope
is starts with '{' and ends with '}'. For example in order to only display
the current file and line number when the information is available the format
would be:
"{ at {$line.file.basename}:${line.number}}"
Broken down this is:
start the scope: "{"
format whose content will only be displayed if all information is available:
"at {$line.file.basename}:${line.number}"
end the scope: "}"
We currently can represent the infomration we see when stopped at a frame:
frame #0: 0x0000000100000e85 a.out`main + 4 at test.c:19
with the following format:
"frame #${frame.index}: ${frame.pc} {${module.file.basename}`}{${function.name}{${function.pc-offset}}{ at ${line.file.basename}:${line.number}}\n"
This breaks down to always print:
"frame #${frame.index}: ${frame.pc} "
only print the module followed by a tick if we have a valid module:
"{${module.file.basename}`}"
print the function name with optional offset:
"{${function.name}{${function.pc-offset}}"
print the line info if it is available:
"{ at ${line.file.basename}:${line.number}}"
then finish off with a newline:
"\n"
Notice you can also put newlines ("\n") and tabs and everything else you
are used to putting in a format string when desensitized with the \ character.
Cleaned up some of the user settings controller subclasses. All of them
do not have any global settings variables and were all implementing stubs
for the get/set global settings variable. Now there is a default version
in UserSettingsController that will do nothing.
llvm-svn: 114306
accessed by the objects that own the settings. The previous approach wasn't
very usable and made for a lot of unnecessary code just to access variables
that were already owned by the objects.
While I fixed those things, I saw that CommandObject objects should really
have a reference to their command interpreter so they can access the terminal
with if they want to output usaage. Fixed up all CommandObjects to take
an interpreter and cleaned up the API to not need the interpreter to be
passed in.
Fixed the disassemble command to output the usage if no options are passed
down and arguments are passed (all disassebmle variants take options, there
are no "args only").
llvm-svn: 114252
was used to set the selected thread if none was selected. Use a more robust
API to accomplish the task.
Also fixed an error found, while investigating, in CommandObjectThreadSelect::
Execute() where the return status was not properly set if successful.
As a result, both the stl step-in test cases with expectedFailure decorators now
passed.
llvm-svn: 113825
to be set up the way they are. Comment out code that removes pending
settings for live instances (after the settings are copied over).
llvm-svn: 113519
Make get/set variable at the debugger level always set the particular debugger's instance variables rather than
the default variables.
llvm-svn: 113474
pending instance uses the specified instance name rather than creating a new one; add brackets to instance names
when searching for and removing pending instances.
llvm-svn: 113370
handles user settable internal variables (the equivalent of set/show
variables in gdb). In addition to the basic infrastructure (most of
which is defined in UserSettingsController.{h,cpp}, there are examples
of two classes that have been set up to contain user settable
variables (the Debugger and Process classes). The 'settings' command
has been modified to be a command-subcommand structure, and the 'set',
'show' and 'append' commands have been moved into this sub-commabnd
structure. The old StateVariable class has been completely replaced
by this, and the state variable dictionary has been removed from the
Command Interpreter. Places that formerly accessed the state variable
mechanism have been modified to access the variables in this new
structure instead (checking the term-width; getting/checking the
prompt; etc.)
Variables are attached to classes; there are two basic "flavors" of
variables that can be set: "global" variables (static/class-wide), and
"instance" variables (one per instance of the class). The whole thing
has been set up so that any global or instance variable can be set at
any time (e.g. on start up, in your .lldbinit file), whether or not
any instances actually exist (there's a whole pending and default
values mechanism to help deal with that).
llvm-svn: 113041
execution context only when the process is still alive. When running the test
suite, the debugger is launching and killing processes constantly.
This might be the cause of the test hang as reported in rdar://problem/8377854,
where the debugger was looping infinitely trying to update a supposedly stale
thread list.
llvm-svn: 113022
Add functions to look up debugger by id
Add global variable to lldb python module, to hold debugger id
Modify embedded Python interpreter to update the global variable with the
id of its current debugger.
Modify the char ** typemap definition in lldb.swig to accept 'None' (for NULL)
as a valid value.
The point of all this is so that, when you drop into the embedded interpreter
from the command interpreter (or when doing Python-based breakpoint commands),
there is a way for the Python side to find/get the correct debugger
instance ( by checking debugger_unique_id, then calling
SBDebugger::FindDebuggerWithID on it).
llvm-svn: 107287
to the debugger from GUI windows. Previously there was one global debugger
instance that could be accessed that had its own command interpreter and
current state (current target/process/thread/frame). When a GUI debugger
was attached, if it opened more than one window that each had a console
window, there were issues where the last one to setup the global debugger
object won and got control of the debugger.
To avoid this we now create instances of the lldb_private::Debugger that each
has its own state:
- target list for targets the debugger instance owns
- current process/thread/frame
- its own command interpreter
- its own input, output and error file handles to avoid conflicts
- its own input reader stack
So now clients should call:
SBDebugger::Initialize(); // (static function)
SBDebugger debugger (SBDebugger::Create());
// Use which ever file handles you wish
debugger.SetErrorFileHandle (stderr, false);
debugger.SetOutputFileHandle (stdout, false);
debugger.SetInputFileHandle (stdin, true);
// main loop
SBDebugger::Terminate(); // (static function)
SBDebugger::Initialize() and SBDebugger::Terminate() are ref counted to
ensure nothing gets destroyed too early when multiple clients might be
attached.
Cleaned up the command interpreter and the CommandObject and all subclasses
to take more appropriate arguments.
llvm-svn: 106615