As discussed on D19318, if we only demand the first element of a DIVSS/DIVSD intrinsic, then reduce to a FDIV call. This matches the existing FADD/FSUB/FMUL patterns.
llvm-svn: 267359
Split from D17490. This patch improves support for determining the demanded vector elements through SSE scalar intrinsics:
1 - demanded vector element support for unary and some extra binary scalar intrinsics (RCP/RSQRT/SQRT/FRCZ and ADD/CMP/DIV/ROUND).
2 - addss/addsd get simplified to a fadd call if we aren't interested in the pass through elements
3 - if we don't need the lowest element of a scalar operation then just use the first argument (the pass through elements) directly
We can add support for propagating demanded elements through any equivalent packed SSE intrinsics in a future patch (these wouldn't use the pass through patterns).
Differential Revision: http://reviews.llvm.org/D19318
llvm-svn: 267357
This patch improves support for determining the demanded vector elements through SSE scalar intrinsics:
1 - recognise that we only need the lowest element of the second input for binary scalar operations (and all the elements of the first input)
2 - recognise that the roundss/roundsd intrinsics use the lowest element of the second input and the remaining elements from the first input
Differential Revision: http://reviews.llvm.org/D17490
llvm-svn: 267356
We aren't currently making use of this in any successful mask decode and its actually incorrect as it inserts the wrong number of SM_SentinelUndef mask elements.
llvm-svn: 267350
There's hardly any functionality change here. Instead of calling
materializeMetadata on the first call to materialize(GlobalValue*), wait
until the first one that's actually going to do something. Noticed by
inspection; I don't have a concrete case where this makes a difference.
Added an assertion in materializeMetadata to be sure this (or a future
change) doesn't delay materializeMetadata after function-level metadata.
llvm-svn: 267345
Summary:
Remove the GlobalValueInfo and change the ModuleSummaryIndex to directly
reference summary objects. The info structure was there to support lazy
parsing of the combined index summary objects, which is no longer
needed and not supported.
Reviewers: joker.eph
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D19462
llvm-svn: 267344
Reused the ability to split constants of a type wider than the shuffle mask to work with masks generated from scalar constants transfered to xmm.
This fixes an issue preventing PSHUFB target shuffle masks decoding rematerialized scalar constants and also exposes the XOP VPPERM bug described in PR27472.
llvm-svn: 267343
Enum bitfields have crazy portability issues with MSVC. Use unsigned
instead of LinkageTypes here in the ModuleSummaryIndex to address
Takumi's concerns from r267335.
llvm-svn: 267342
This fixes PR22248 on s390x. The previous attempt at this was D19101,
which was before LOAD_STACK_GUARD existed. Compared to the previous
version, this always emits a rather ugly block of 4 instructions, involving
a thread pointer load that can't be shared with other potential users.
However, this is necessary for SSP - spilling the guard value (or thread
pointer used to load it) is counter to the goal, since it could be
overwritten along with the frame it protects.
Differential Revision: http://reviews.llvm.org/D19363
llvm-svn: 267340
Add tests for some missing cases to bitcode upgrade in r267296.
- DICompositeType with an 'elements:' field, which will cause it to be
involved in a cycle after the upgrade.
- A DIDerivedType that references a class in 'extraData:'.
I updated test/Bitcode/dityperefs-3.8.ll with the missing cases and
regenerated test/Bitcode/dityperefs-3.8.ll.bc.
llvm-svn: 267332
The original patch caused crashes because it could derefence a null pointer
for SelectionDAGTargetInfo for targets that do not define it.
Evaluates fmul+fadd -> fmadd combines and similar code sequences in the
machine combiner. It adds support for float and double similar to the existing
integer implementation. The key features are:
- DAGCombiner checks whether it should combine greedily or let the machine
combiner do the evaluation. This is only supported on ARM64.
- It gives preference to throughput over latency: the heuristic used is
to combine always in loops. The targets decides whether the machine
combiner should optimize for throughput or latency.
- Supports for fmadd, f(n)msub, fmla, fmls patterns
- On by default at O3 ffast-math
llvm-svn: 267328
We should just test the effect of the clang level option here, i.e.
that a summary is correctly emitted with -flto=thin
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 267321
in a debug-info-bearing function has a debug location attached to it. Failure to
do so causes an "!dbg attachment points at wrong subprogram for function"
assertion failure when the inliner sets up inline scope info.
rdar://problem/25878916
llvm-svn: 267320
Right now it only contains the LinkageType, but will be extended
with "hasSection", "isOptSize", "hasInlineAssembly", etc.
Differential Revision: http://reviews.llvm.org/D19404
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 267319
Keeping as much as possible internal/private is
known to help the optimizer. Let's try to benefit from
this in ThinLTO.
Note: this is early work, but is enough to build clang (and
all the LLVM tools). I still need to write some lit-tests...
Differential Revision: http://reviews.llvm.org/D19103
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 267317
Fixes check-llvm when bootstrapping.
Also remove mostly dead and most likely incorrect logic regarding preemption
of weak undefined symbols.
llvm-svn: 267314