Many of our tests were not using valid rounding mode immediates. Clang verifies this in the frontend when it creates the intrinsics from builtins, but the backend would still lower invalid immediates.
With this change we will now leave them as intrinsics if the immediate is invalid. This will cause an isel selection failure.
llvm-svn: 355789
Currently the store+load is folded and both operands of the umulo
end up being constants. To avoid this getting folded away entirely,
make sure at least one operand is non-constant.
Also remove some allocas which don't seem relevant to the test.
llvm-svn: 355776
This patch adds proper handling of -target-abi, as accepted by llvm-mc and
llc. Lowering (codegen) for the hard-float ABIs will follow in a subsequent
patch. However, this patch does add MC layer support for the hard float and
RVE ABIs (emission of the appropriate ELF flags
https://github.com/riscv/riscv-elf-psabi-doc/blob/master/riscv-elf.md#-file-header).
ABI parsing must be shared between codegen and the MC layer, so we add
computeTargetABI to RISCVUtils. A warning will be printed if an invalid or
unrecognized ABI is given.
Differential Revision: https://reviews.llvm.org/D59023
llvm-svn: 355771
Summary:
Uses the named operands tablegen feature to look up the indices of
offset, address, and p2align operands for all load and store
instructions. This replaces brittle, incorrect logic for identifying
loads and store when eliminating frame indices, which previously
crashed on bulk-memory ops. It also cleans up the SetP2Alignment pass.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59007
llvm-svn: 355770
This saves needing to call getInt32 ourselves. Making the code a little shorter.
The test changes are because insert/extract use getInt64 internally. Shouldn't be a functional issue.
This cleanup because I plan to write similar code for expandload/compressstore.
llvm-svn: 355767
An extension of D58282 noted in PR39665:
https://bugs.llvm.org/show_bug.cgi?id=39665
This doesn't answer the request to use movmsk, but that's an
independent problem. We need this and probably still need
scalarization of FP selects because we can't do that as a
target-independent transform (although it seems likely that
targets besides x86 should have this transform).
llvm-svn: 355741
Summary:
This change change the instrumentation to allow users to view the registers at the point at which tag mismatch occured. Most of the heavy lifting is done in the runtime library, where we save the registers to the stack and emit unwind information. This allows us to reduce the overhead, as very little additional work needs to be done in each __hwasan_check instance.
In this implementation, the fast path of __hwasan_check is unmodified. There are an additional 4 instructions (16B) emitted in the slow path in every __hwasan_check instance. This may increase binary size somewhat, but as most of the work is done in the runtime library, it's manageable.
The failure trace now contains a list of registers at the point of which the failure occured, in a format similar to that of Android's tombstones. It currently has the following format:
Registers where the failure occurred (pc 0x0055555561b4):
x0 0000000000000014 x1 0000007ffffff6c0 x2 1100007ffffff6d0 x3 12000056ffffe025
x4 0000007fff800000 x5 0000000000000014 x6 0000007fff800000 x7 0000000000000001
x8 12000056ffffe020 x9 0200007700000000 x10 0200007700000000 x11 0000000000000000
x12 0000007fffffdde0 x13 0000000000000000 x14 02b65b01f7a97490 x15 0000000000000000
x16 0000007fb77376b8 x17 0000000000000012 x18 0000007fb7ed6000 x19 0000005555556078
x20 0000007ffffff768 x21 0000007ffffff778 x22 0000000000000001 x23 0000000000000000
x24 0000000000000000 x25 0000000000000000 x26 0000000000000000 x27 0000000000000000
x28 0000000000000000 x29 0000007ffffff6f0 x30 00000055555561b4
... and prints after the dump of memory tags around the buggy address.
Every register is saved exactly as it was at the point where the tag mismatch occurs, with the exception of x16/x17. These registers are used in the tag mismatch calculation as scratch registers during __hwasan_check, and cannot be saved without affecting the fast path. As these registers are designated as scratch registers for linking, there should be no important information in them that could aid in debugging.
Reviewers: pcc, eugenis
Reviewed By: pcc, eugenis
Subscribers: srhines, kubamracek, mgorny, javed.absar, krytarowski, kristof.beyls, hiraditya, jdoerfert, llvm-commits, #sanitizers
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D58857
llvm-svn: 355738
When matching half of the build_vector to a load, there could still be
a hidden dependency on the other half of the build_vector the pattern
wouldn't detect. If there was an additional chain dependency on the
other value, a cycle could be introduced.
I don't think a tablegen pattern is capable of matching the necessary
conditions, so move this into PreprocessISelDAG. Check isPredecessorOf
for the other value to avoid a cycle. This has a warning that it's
expensive, so this should probably be moved into an MI pass eventually
that will have more freedom to reorder instructions to help match
this. That is currently complicated by the lack of a computeKnownBits
type mechanism for the selected function.
llvm-svn: 355731
This avoids breaking possible value dependencies when sorting loads by
offset.
AMDGPU has some load instructions that write into the high or low bits
of the destination register, and have a tied input for the other input
bits. These can easily have the same base pointer, but be a swizzle so
the high address load needs to come first. This was inserting glue
forcing the opposite ordering, producing a cycle the InstrEmitter
would assert on. It may be potentially expensive to look for the
dependency between the other loads, so just skip any where this could
happen.
Fixes bug 40936 by reverting r351379, which added a hacky attempt to
fix this by adding chains in this case, which I think was just working
around broken glue before the InstrEmitter. The core of the patch is
re-implementing the fix for that problem.
llvm-svn: 355728
This was checking the wrong operands for the base register and the
offsets. The indexes are shifted by the number of output registers
from the machine instruction definition, and the chain is moved to the
end.
llvm-svn: 355722
Summary:
Right now, when we encounter a string equality check,
e.g. `if (memcmp(a, b, s) == 0)`, we try to expand to a comparison if `s` is a
small compile-time constant, and fall back on calling `memcmp()` else.
This is sub-optimal because memcmp has to compute much more than
equality.
This patch replaces `memcmp(a, b, s) == 0` by `bcmp(a, b, s) == 0` on platforms
that support `bcmp`.
`bcmp` can be made much more efficient than `memcmp` because equality
compare is trivially parallel while lexicographic ordering has a chain
dependency.
Subscribers: fedor.sergeev, jyknight, ckennelly, gchatelet, llvm-commits
Differential Revision: https://reviews.llvm.org/D56593
llvm-svn: 355672
We were just checking pointer size and type primitive size. But this caused unintended things like vectors of half being accepted by masked load/store.
For FP we now explicitly check for only double and float.
For pointers we now let any pointer through. Trusting that only 32 and 64 would be used to generate assembly.
We only check bitwidth after checking that the type is an integer.
llvm-svn: 355667
- Copy kernel symbol attributes into kernel descriptor attributes
- Make sure kernel symbol's visibility is not "higher" than protected
Differential Revision: https://reviews.llvm.org/D59057
llvm-svn: 355630
Summary:
ShadowCallStack on x86_64 suffered from the same racy security issues as
Return Flow Guard and had performance overhead as high as 13% depending
on the benchmark. x86_64 ShadowCallStack was always an experimental
feature and never shipped a runtime required to support it, as such
there are no expected downstream users.
Reviewers: pcc
Reviewed By: pcc
Subscribers: mgorny, javed.absar, hiraditya, jdoerfert, cfe-commits, #sanitizers, llvm-commits
Tags: #clang, #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D59034
llvm-svn: 355624
In some loops, we end up generating loop induction variables that look like:
{(-1 * (zext i16 (%i0 * %i1) to i32))<nsw>,+,1}
As opposed to the simpler:
{(zext i16 (%i0 * %i1) to i32),+,-1}
i.e we count up from -limit to 0, not the simpler counting down from limit to
0. This is because the scores, as LSR calculates them, are the same and the
second is filtered in place of the first. We end up with a redundant SUB from 0
in the code.
This patch tries to make the calculation of the setup cost a little more
thoroughly, recursing into the scev members to better approximate the setup
required. The cost function for comparing LSR costs is:
return std::tie(C1.NumRegs, C1.AddRecCost, C1.NumIVMuls, C1.NumBaseAdds,
C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
std::tie(C2.NumRegs, C2.AddRecCost, C2.NumIVMuls, C2.NumBaseAdds,
C2.ScaleCost, C2.ImmCost, C2.SetupCost);
So this will only alter results if none of the other variables turn out to be
different.
Differential Revision: https://reviews.llvm.org/D58770
llvm-svn: 355597
Unsigned mul high for MIPS32 is selected into two PseudoInstructions:
PseudoMULTu and PseudoMFHI that use accumulator register class ACC64 for
some of its operands. Registers in this class have appropriate hi and lo
register as subregisters: $lo0 and $hi0 are subregisters of $ac0 etc.
mul instruction implicit-defs $lo0 and $hi0 according to MipsInstrInfo.td.
In functions where mul and PseudoMULTu are present fastRegisterAllocator
will "run out of registers during register allocation" because
'calcSpillCost' for $ac0 will return spillImpossible because subregisters
$lo0 and $hi0 of $ac0 are reserved by mul instruction above. A solution is
to mark implicit-defs of $lo0 and $hi0 as dead in mul instruction.
Differential Revision: https://reviews.llvm.org/D58715
llvm-svn: 355594
A previous patch for "uniform-work-group-size" attribute was found to break
some RADV and possibly radeon SI tests and had to be retracted.
This patch fixes that.
Differential Revision: http://reviews.llvm.org/D58993
llvm-svn: 355574
MIPS target supports lowering `RETURNADDR` and `FRAMEADDR` for a current
frame only. It's better to show an error message then crash on assertion
if `__builtin_return_address` is invoked with non-zero argument.
llvm-svn: 355558
In file PPCBranchSelector.cpp we tend to over estimate code size due to large
alignment and inline assembly. Usually it causes larger computed branch offset,
it is not big problem. But sometimes it may also causes smaller computed branch
offset than actual branch offset. If the offset is close to the limit of
encoding, it may cause problem at run time.
Following is a simplified example.
actual estimated
address address
...
bne Far 100 10c
.p2align 4
Near: 110 110
...
Far: 8108 8108
Actual offset: 0x8108 - 0x100 = 0x8008
Computed offset: 0x8108 - 0x10c = 0x7ffc
The computed offset is at most ((1 << alignment) - 4) bytes smaller than actual
offset. So we add this number to the offset for safety.
Differential Revision: https://reviews.llvm.org/D57718
llvm-svn: 355529
Summary:
This adds support for 64 bit buffer atomic arithmetic instructions but does not include
cmpswap as that depends on a fix to the way the register pairs are handled
Change-Id: Ib207ea65fb69487ccad5066ea647ae8ddfe2ce61
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58918
llvm-svn: 355520
As noticed on D58965
DAGCombiner::visitSELECT has something similar, so we should be able to move this to DAGCombiner and support VSELECT as well at some point.
Differential Revision: https://reviews.llvm.org/D58974
llvm-svn: 355494
During the lowering of a switch that would result in the generation of a
jump table, a range check is performed before indexing into the jump
table, for the switch value being outside the jump table range and a
conditional branch is inserted to jump to the default block. In case the
default block is unreachable, this conditional jump can be omitted. This
patch implements omitting this conditional branch for unreachable
defaults.
Differential Revision: https://reviews.llvm.org/D52002
Reviewers: Hans Wennborg, Eli Freidman, Roman Lebedev
llvm-svn: 355490