When forming an IT block from the first MOV here:
%R2<def> = t2MOVr %R0, pred:1, pred:%CPSR, opt:%noreg
%R3<def> = tMOVr %R0<kill>, pred:14, pred:%noreg
the move in to R3 is moved out of the IT block so that later instructions on the same predicate can be inside this block, and we can share the IT instruction.
However, when moving the R3 copy out of the IT block, we need to clear its kill flags for anything in use at this point in time, ie, R0 here.
This appeases the machine verifier which thought that R0 wasn't defined when used.
I have a test case, but its extremely register allocator specific. It would be too fragile to commit a test which depends on the register allocator here.
llvm-svn: 236468
It appears to ignore or find ambiguous MachineInstrBuilder's conversion
operators that allow conversion to MachineInstr* and
MachineBasicBlock::bundle_iterator.
As a workaround, add an explicit way to get the MachineInstr.
llvm-svn: 221017
By default, the behavior of IT block generation will be determinated
dynamically base on the arch (armv8 vs armv7). This patch adds backend
options: -arm-restrict-it and -arm-no-restrict-it. The former one
restricts the generation of IT blocks (the same behavior as thumbv8) for
both arches. The later one allows the generation of legacy IT block (the
same behavior as ARMv7 Thumb2) for both arches.
Clang will support -mrestrict-it and -mno-restrict-it, which is
compatible with GCC.
llvm-svn: 194592
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
There are some that I didn't remove this round because they looked like
obvious stubs. There are dead variables in gtest too, they should be
fixed upstream.
llvm-svn: 158090
No functional change intended.
Sorry for the churn. The iterator classes are supposed to help avoid
giant commits like this one in the future. The TableGen-produced
register lists are getting quite large, and it may be necessary to
change the table representation.
This makes it possible to do so without changing all clients (again).
llvm-svn: 157854
Revert r153519: "ARMLoadStoreOptimizer invalidates register liveness."
These patches caused miscompilations in povray by turning off branch
folding's updating of live-in lists.
It turns out the the late scheduler depends on the live-in lists, even
if it doesn't need correct kill flags.
<rdar://problem/11139228>
llvm-svn: 153593
to instruction right after the last instruction in the bundle.
- Add a finalizeBundle() variant that doesn't specify LastMI. Instead, the code
will find the last instruction in the bundle by following the 'InsideBundle'
marker. This is useful in case bundles are formed early (i.e. during MI
scheduling) but finalized later (i.e. after register allocator has finished
rewriting virtual registers with physical registers).
llvm-svn: 148444
to finalize MI bundles (i.e. add BUNDLE instruction and computing register def
and use lists of the BUNDLE instruction) and a pass to unpack bundles.
- Teach more of MachineBasic and MachineInstr methods to be bundle aware.
- Switch Thumb2 IT block to MI bundles and delete the hazard recognizer hack to
prevent IT blocks from being broken apart.
llvm-svn: 146542
generator to it. For non-bundle instructions, these behave exactly the same
as the MC layer API.
For properties like mayLoad / mayStore, look into the bundle and if any of the
bundled instructions has the property it would return true.
For properties like isPredicable, only return true if *all* of the bundled
instructions have the property.
For properties like canFoldAsLoad, isCompare, conservatively return false for
bundles.
llvm-svn: 146026
block. E.g., if we have:
movs r1, r1
rsb r1, 0
movs r2, r2
rsb r2, 0
we don't want this to be converted to:
movs r1, r1
movs r2, r2
itt mi
rsb r1, 0
rsb r2, 0
PR11107 & <rdar://problem/10259534>
llvm-svn: 141589
Merge the tMOVr, tMOVgpr2tgpr, tMOVtgpr2gpr, and tMOVgpr2gpr instructions
into tMOVr. There's no need to keep them separate. Giving the tMOVr
instruction the proper GPR register class for its operands is sufficient
to give the register allocator enough information to do the right thing
directly.
llvm-svn: 134204
introduced in r106343, but only showed up recently (with a particular compiler &
linker combination) because of the particular check, and because we have no
builtin checking for dereferencing the end of an array, which is truly
unfortunate.
llvm-svn: 106908
- This fixed a number of bugs in if-converter, tail merging, and post-allocation
scheduler. If-converter now runs branch folding / tail merging first to
maximize if-conversion opportunities.
- Also changed the t2IT instruction slightly. It now defines the ITSTATE
register which is read by instructions in the IT block.
- Added Thumb2 specific hazard recognizer to ensure the scheduler doesn't
change the instruction ordering in the IT block (since IT mask has been
finalized). It also ensures no other instructions can be scheduled between
instructions in the IT block.
This is not yet enabled.
llvm-svn: 106344
the same condition, it's important to make sure they are scheduled together
to avoid forming multiple IT blocks. I'm adding a pre-regalloc pass that forms
IT blocks early (by re-scheduling instructions and split basic blocks) to
attempt to fix this. This is not turned on by default since I am not sure this
is the right fix.
Another issue is llvm selects are modeled as two-address conditional moves.
This can be very bad when the copies before the conditional moves are not
coalesced away. Teach IT formation pass to move the copies above the IT block
(when legal) to avoid breaking the IT block.
llvm-svn: 105669
matches that of Firstcond[0] and E means otherwise. The Firstcond[0] is also
tagged in the Mask to facilitate Asm printing. The disassembler also depends
on this arrangement. This is similar to what's described in A2.5.2 ITSTATE.
Ran:
utils/lit/lit.py test/CodeGen/ARM test/CodeGen/Thumb test/CodeGen/Thumb2
successfully.
llvm-svn: 98775
U test/CodeGen/ARM/tls2.ll
U test/CodeGen/ARM/arm-negative-stride.ll
U test/CodeGen/ARM/2009-10-30.ll
U test/CodeGen/ARM/globals.ll
U test/CodeGen/ARM/str_pre-2.ll
U test/CodeGen/ARM/ldrd.ll
U test/CodeGen/ARM/2009-10-27-double-align.ll
U test/CodeGen/Thumb2/thumb2-strb.ll
U test/CodeGen/Thumb2/ldr-str-imm12.ll
U test/CodeGen/Thumb2/thumb2-strh.ll
U test/CodeGen/Thumb2/thumb2-ldr.ll
U test/CodeGen/Thumb2/thumb2-str_pre.ll
U test/CodeGen/Thumb2/thumb2-str.ll
U test/CodeGen/Thumb2/thumb2-ldrh.ll
U utils/TableGen/TableGen.cpp
U utils/TableGen/DisassemblerEmitter.cpp
D utils/TableGen/RISCDisassemblerEmitter.h
D utils/TableGen/RISCDisassemblerEmitter.cpp
U Makefile.rules
U lib/Target/ARM/ARMInstrNEON.td
U lib/Target/ARM/Makefile
U lib/Target/ARM/AsmPrinter/ARMInstPrinter.cpp
U lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp
U lib/Target/ARM/AsmPrinter/ARMInstPrinter.h
D lib/Target/ARM/Disassembler
U lib/Target/ARM/ARMInstrFormats.td
U lib/Target/ARM/ARMAddressingModes.h
U lib/Target/ARM/Thumb2ITBlockPass.cpp
llvm-svn: 98640
(RISCDisassemblerEmitter) which emits the decoder functions for ARM and Thumb,
and the disassembler core which invokes the decoder function and builds up the
MCInst based on the decoded Opcode.
Added sub-formats to the NeonI/NeonXI instructions to further refine the NEONFrm
instructions to help disassembly.
We also changed the output of the addressing modes to omit the '+' from the
assembler syntax #+/-<imm> or +/-<Rm>. See, for example, A8.6.57/58/60.
And modified test cases to not expect '+' in +reg or #+num. For example,
; CHECK: ldr.w r9, [r7, #28]
llvm-svn: 98637
load of a GV from constantpool and then add pc. It allows the code sequence to
be rematerializable so it would be hoisted by machine licm.
- Add a late pass to break these pseudo instructions into a number of real
instructions. Also move the code in Thumb2 IT pass that breaks up t2MOVi32imm
to this pass. This is done before post regalloc scheduling to allow the
scheduler to proper schedule these instructions. It also allow them to be
if-converted and shrunk by later passes.
llvm-svn: 86304