Summary:
This is an improvement on rL288448 where address sanitization was listed
as supported for the CudaToolChain. Since the intent is for the
CudaToolChain not to reject any flags supported by the host compiler,
this patch switches to forwarding the CudaToolChain sanitizer support to
the host toolchain rather than explicitly whitelisting address
sanitization.
Thanks to hfinkel for this suggestion.
Reviewers: jlebar
Subscribers: hfinkel, cfe-commits
Differential Revision: https://reviews.llvm.org/D27351
llvm-svn: 288512
removed as a duplicate header search path
The commit r126167 started passing the First index into RemoveDuplicates, but
forgot to update 0 to First in the loop that looks for the duplicate. This
resulted in a bug where an -iquoted search path was incorrectly removed if you
passed in the same path into -iquote and more than one time into -isystem.
rdar://23991350
Differential Revision: https://reviews.llvm.org/D27298
llvm-svn: 288491
Summary:
The test introduced by rL288448 is currently failing because
unimportant but unexpected errors appear as output from a test compile
line. This patch looks for a more specific error message, in order to
avoid false positives.
Reviewers: jlebar
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D27328
Switch to more specific error
llvm-svn: 288453
We try to include the headers of the module textually in this case, still
enforcing the modules semantic rules. In order to make that work, we need to
still track that we're entering and leaving the module. Also, if the module was
also marked as unavailable (perhaps because it was missing a file), we
shouldn't mark the module unavailable -- we don't need the module to be
complete if we're going to enter it textually.
llvm-svn: 288449
This fixes a bug that was introduced in rL287285. The bug made it
illegal to pass -fsanitize=address during CUDA compilation because the
CudaToolChain class was switched from deriving from the Linux toolchain
class to deriving directly from the ToolChain toolchain class. When
CudaToolChain derived from Linux, it used Linux's getSupportedSanitizers
method, and that method allowed ASAN, but when it switched to deriving
directly from ToolChain, it inherited a getSupportedSanitizers method
that didn't allow for ASAN.
This patch fixes that bug by creating a getSupportedSanitizers method
for CudaToolChain that supports ASAN.
This patch also fixes the test that checks that -fsanitize=address is
passed correctly for CUDA builds. That test didn't used to notice if an
error message was emitted, and that's why it didn't catch this bug when
it was first introduced. With the fix from this patch, that test will
now catch any similar bug in the future.
llvm-svn: 288448
After r256463, both the LHS and RHS now refer to the same variable. Before,
they referred to the member, the parameter respectively. Now GCC6's
-Wtautological-compare complains.
llvm-svn: 288444
In bigger projects like an Operating System, the same source code is
often compiled in slightly different ways. This could be the difference
between PIC and non-PIC code for static vs dynamic libraries, it could
also be the difference between size optimised versions of tools for
ramdisk images. At the moment, the compilation database has no way to
distinguish such cases. As first step, add a field in the JSON format
for it and process it accordingly.
Differential Revision: https://reviews.llvm.org/D27138
llvm-svn: 288436
have the same size.
This fixes an asset that is triggered when an address of a boolean
variable is passed to __builtin_arm_ldrex or __builtin_arm_strex.
rdar://problem/29269006
llvm-svn: 288404
We should complain about the following:
```
void foo() __attribute__((unavailable("a", "b")));
```
Instead, we currently just ignore "b". (...We also end up ignoring "a",
because we assume elsewhere that this attribute can only have 1 or 0
args.)
This happens because `unavailable` has a fake enum arg, and
`AttributeList::{getMinArgs,getMaxArgs}` include fake args in their
counts.
llvm-svn: 288388
Summary: The basic constraint solver was dropped in rL162384, leaving the range constraint solver as the default and only constraint solver. Explicitly specifying it is unnecessary, and makes it difficult to test with other solver backends.
Reviewers: zaks.anna, dcoughlin
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D26694
llvm-svn: 288372
This patch ensures that the typo fixit for the @try/@finally/@autoreleasepool {}
directive is shown only when we're parsing an actual statement where such
directives can actually be present.
rdar://19669565
Differential Revision: https://reviews.llvm.org/D26916
llvm-svn: 288334
This adds the access qualifier to the Pipe Type, rather than using a class
hierarchy.
It also fixes mergeTypes for Pipes, by disallowing merges. Only identical
pipe types can be merged. The test case in invalid-pipes-cl2.0.cl is added
to check that.
llvm-svn: 288332
Summary: This patch adds a check and an error message to gnutools::Linker::ConstructJob in case the architecture is not supported. For most other operating systems, the error message is created in lib/Basic/Targets.cpp:AllocateTarget, but when construction the linker arguments for the gnutools linker a supported architecture is required.
Reviewers: rafael, joerg, echristo
Subscribers: mehdi_amini, joerg, dschuff, cfe-commits
Differential Revision: https://reviews.llvm.org/D27066
llvm-svn: 288327
arguments from a declaration; despite what the standard says, this form of
deduction should not be considering exception specifications.
llvm-svn: 288301
Primarily: try to use DenseSet<StringRef> instead of
std::set<std::string>, and use pretty range algos where we can.
Small sizes were arbitrarily chosen.
llvm-svn: 288297
This patch is to implement sema and parsing for 'teams distribute parallel for simd' pragma.
Differential Revision: https://reviews.llvm.org/D27084
llvm-svn: 288294
performed at the CodeGenModule level.
Would be NFC except we now also use a different uniquing structure so
that we don't get spurious conflicts if you ask for both an NSString
and a CFString for the same content (which is possible with builtins).
llvm-svn: 288287
declared variables.
Teach Sema to check the aligned attribute attached to variable
declarations so that it doesn't issue spurious warnings.
rdar://problem/26517471
Differential revision: https://reviews.llvm.org/D21099
llvm-svn: 288267
When constructing a temporary object region, which represents the result of
MaterializeTemporaryExpr, track down the sub-expression for which the temporary
is necessary with a trick similar to the approach used in CodeGen, namely
by using Expr::skipRValueSubobjectAdjustments().
Then, create the temporary object region with type of that sub-expression.
That type would propagate further in a path-sensitive manner.
During destruction of lifetime-extened temporaries, consult the type of
the temporary object region, rather than the type of the lifetime-extending
variable, in order to call the correct destructor (fixes pr17001) and,
at least, not to crash by trying to call a destructor of a plain type
(fixes pr19539).
rdar://problem/29131302
rdar://problem/29131576
Differential Revision: https://reviews.llvm.org/D26839
llvm-svn: 288263
- Fix the bug with transition handling in ExprInspectionChecker's
checkDeadSymbols implementation.
- Test this bug by adding a new function clang_analyzer_numTimesReached() to
catch number of passes through the code, which should be handy for testing
against unintended state splits.
- Add two more functions should help debugging issues quickly without running
the debugger or dumping exploded graphs - clang_analyzer_dump() which dump()s
an SVal argument to a warning message, and clang_analyzer_printState(), which
dump()s the current program state to stderr.
Differential Revision: https://reviews.llvm.org/D26835
llvm-svn: 288257
Summary: Makes -fprofile-instr-generate and -fprofile-instr-use work
with clang-cl so that profile-guided optimization can be used.
Differential Revision: https://reviews.llvm.org/D27086
llvm-svn: 288230
Other AST consumers can deserialize interesting decls that we might
codegen, but they won't make it to the final object file and can trigger
assertions in debug information generation after finalization.
llvm-svn: 288221
specifications in this mode in C++17, since they're part of the function type,
so check and diagnose them like we would if exceptions were enabled.
Better ideas welcome.
llvm-svn: 288220