In split DWARF v5 files, the DWO id is no longer in the DW_AT_GNU_dwo_id
attribute. It's in the CU header instead. This change makes lldb look in
both places.
Differential Revision: https://reviews.llvm.org/D93444
Explicitly consider the libraries reported on the initial rendezvous
breakpoint hit added. This is necessary on FreeBSD since the dynamic
loader issues only a single 'consistent' state rendezvous breakpoint hit
for all the libraries present in DT_NEEDED. It is also helpful on Linux
where it ensures that ld-linux is considered loaded as well
as the shared system libraries reported afterwards.
Reenable memory maps on FreeBSD since this fixed the issue triggered
by them.
Differential Revision: https://reviews.llvm.org/D92187
LLDB is supposed to ask the Clang Driver what the default module cache path is
and then use that value as the default for the
`symbols.clang-modules-cache-path` setting. However, we use the property type
`String` to change `symbols.clang-modules-cache-path` even though the type of
that setting is `FileSpec`, so the setter will simply do nothing and return
`false`. We also don't check the return value of the setter, so this whole code
ends up not doing anything at all.
This changes the setter to use the correct property type and adds an assert that
we actually successfully set the default path. Also adds a test that checks that
the default value for this setting is never unset/empty path as this would
effectively disable the import-std-module feature from working by default.
Reviewed By: JDevlieghere, shafik
Differential Revision: https://reviews.llvm.org/D92772
Kill (rather than detach) form the inferior if debugserver loses its
connection to lldb to prevent zombie processes.
Differential revision: https://reviews.llvm.org/D92908
LLDB is ignoring compilation errors for one-line breakpoint scripts.
This patch fixes the issues and now the error message of the
ScriptInterpreter is shown to the user.
I had to remove a new-line character for the Lua interpreter since it
was duplicated.
Differential Revision: https://reviews.llvm.org/D92729
Explicitly consider the libraries reported on the initial eTakeSnapshot
action added, through adding them to the added soentry list
in DYLDRendezvous::SaveSOEntriesFromRemote(). This is necessary
on FreeBSD since the dynamic loader issues only a single 'consistent'
state rendezvous breakpoint hit for all the libraries present
in DT_NEEDED (while Linux issues an added-consistent event pair).
Reenable memory maps on FreeBSD since this fixed the issue triggered
by them.
Differential Revision: https://reviews.llvm.org/D92187
The code that gets the ScriptInterpreter was not considering the
case that it receives a Lua interpreter.
Differential Revision: https://reviews.llvm.org/D92249
This reverts commit cf1c774d6a.
This change caused several regressions in the gdb test suite - at least
a sample of which was due to line zero instructions making breakpoints
un-lined. I think they're worth investigating/understanding more (&
possibly addressing) before moving forward with this change.
Revert "[FastISel] NFC: Clean up unnecessary bookkeeping"
This reverts commit 3fd39d3694.
Revert "[FastISel] NFC: Remove obsolete -fast-isel-sink-local-values option"
This reverts commit a474657e30.
Revert "Remove static function unused after cf1c774."
This reverts commit dc35368ccf.
Revert "[lldb] Fix TestThreadStepOut.py after "Flush local value map on every instruction""
This reverts commit 53a14a47ee.
These callbacks are set using the following:
breakpoint command add -s lua -o "print('hello world!')"
The user supplied script is executed as:
function (frame, bp_loc, ...)
<body>
end
So the local variables 'frame', 'bp_loc' and vararg are all accessible.
Any global variables declared will persist in the Lua interpreter.
A user should never hold 'frame' and 'bp_loc' in a global variable as
these userdatas are context dependent.
Differential Revision: https://reviews.llvm.org/D91508
Local values are constants or addresses that can't be folded into
the instruction that uses them. FastISel materializes these in a
"local value" area that always dominates the current insertion
point, to try to avoid materializing these values more than once
(per block).
https://reviews.llvm.org/D43093 added code to sink these local
value instructions to their first use, which has two beneficial
effects. One, it is likely to avoid some unnecessary spills and
reloads; two, it allows us to attach the debug location of the
user to the local value instruction. The latter effect can
improve the debugging experience for debuggers with a "set next
statement" feature, such as the Visual Studio debugger and PS4
debugger, because instructions to set up constants for a given
statement will be associated with the appropriate source line.
There are also some constants (primarily addresses) that could be
produced by no-op casts or GEP instructions; the main difference
from "local value" instructions is that these are values from
separate IR instructions, and therefore could have multiple users
across multiple basic blocks. D43093 avoided sinking these, even
though they were emitted to the same "local value" area as the
other instructions. The patch comment for D43093 states:
Local values may also be used by no-op casts, which adds the
register to the RegFixups table. Without reversing the RegFixups
map direction, we don't have enough information to sink these
instructions.
This patch undoes most of D43093, and instead flushes the local
value map after(*) every IR instruction, using that instruction's
debug location. This avoids sometimes incorrect locations used
previously, and emits instructions in a more natural order.
This does mean materialized values are not re-used across IR
instruction boundaries; however, only about 5% of those values
were reused in an experimental self-build of clang.
(*) Actually, just prior to the next instruction. It seems like
it would be cleaner the other way, but I was having trouble
getting that to work.
Differential Revision: https://reviews.llvm.org/D91734
Add a 'can_connect' parameter to Process plugin initialization, and use
it to filter plugins to these capable of remote connections. This is
used to prevent 'process connect' from picking up a plugin that can only
be used locally, e.g. the legacy FreeBSD plugin.
Differential Revision: https://reviews.llvm.org/D91810
Translate between abridged and full ftag values in order to expose
the latter in the gdb-remote protocol while the former are used by
FXSAVE/XSAVE... This matches the gdb behavior.
The Shell/Register tests now rely on the new behavior, and therefore
are run on non-Darwin systems only. The Python (API) test relies
on the legacy behavior, and is run on Darwin only.
Differential Revision: https://reviews.llvm.org/D91504
D91497 changed lldb/test/Shell/Register/x86-fp-write.test and added target-x86_64 to the REQUIRES clause.
It looks this test does not pass on this platform so removing it since it one of tests failing on the
green dragon build bot.
Translate between abridged and full ftag values in order to expose
the latter in the gdb-remote protocol while the former are used by
FXSAVE/XSAVE... This matches the gdb behavior.
Differential Revision: https://reviews.llvm.org/D91504
The FXSAVE/XSAVE data can have two different layouts on x86_64. When
called as FXSAVE/XSAVE..., the Instruction Pointer and Address Pointer
registers are reported using a 16-bit segment identifier and a 32-bit
offset. When called as FXSAVE64/XSAVE64..., they are reported using
a complete 64-bit offsets instead.
LLDB has historically followed GDB and unconditionally used to assume
the 32-bit layout, with the slight modification of possibly
using a 32-bit segment register (i.e. extending the register into
the reserved 16 upper bits). When the underlying operating system used
FXSAVE64/XSAVE64..., the pointer was split into two halves,
with the upper half repored as the segment registers. While
reconstructing the full address was possible on the user end (and e.g.
the FPU register tests did that), it certainly was not the most
convenient option.
Introduce a two additional 'fip' and 'fdp' registers that overlap
with 'fiseg'/'fioff' and 'foseg'/'foff' respectively, and report
the complete 64-bit address.
Differential Revision: https://reviews.llvm.org/D91497
Add a parser for JSON crashlogs. The CrashLogParser now defers to either
the JSONCrashLogParser or the TextCrashLogParser. It first tries to
interpret the input as JSON, and if that fails falling back to the
textual parser.
Differential revision: https://reviews.llvm.org/D91130
I think the check for whether the process is connected is totally bogus
in the first place, but on the off-chance that's it's not, we should
behave the same in synchronous and asynchronous mode.
When I added TestAbortExitCode I actually planned this to be a generic test for the
exit code functionality on POSIX systems. However due to all the different test setups we
can have I don't think this worked out. Right now the test had to be made so permissive
that it pretty much can't fail.
Just to summarize, we would need to support the following situations:
1. ToT debugserver (on macOS)
2. lldb-server (on other platforms)
3. Any old debugserver version when using the system debugserver (on macOS)
This patch is removing TestAbortExitCode and adds a ToT debugserver specific test
that checks the patch that motivated the whole exit code testing. There is already
an exit-code test for lldb-server from what I can see and 3) is pretty much untestable
as we don't know anything about the system debugserver.
Reviewed By: kastiglione
Differential Revision: https://reviews.llvm.org/D89305
Add a test verifying that after the 'watchpoint' command, new values
of x86 debug registers can be read back correctly. The primary purpose
of this test is to catch broken DRn reading and help debugging it.
Differential Revision: https://reviews.llvm.org/D91264
It seems that TestErrorMessages.test is failing on the standalone + Xcode builds
as lldb-server executable can't be found by lit's default PATH search. I assume
invoking lldb-server via a lit substitution gets this working again as
everything else is working, so that's what this patch is doing.
I had to add the lldb-server substitution as the test seems lldb-server specific
and we don't want it to default to debugserver on Darwin.
Using a substitution also seems in general like a good idea so that the commands
lit is printing on failure are using the full path to lldb-server and can be
re-run in a terminal.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D91155
Part 2 of a fix for JITed code debugging. This has been a regression from 5.0 to 6.0 and it's still reproducible on current master: https://bugs.llvm.org/show_bug.cgi?id=36209 Part 1 was D61611 a while ago.
The in-memory object files we obtain from JITLoaderGDB are not yet relocated. It looks like this used to happen on the LLDB side and my guess is that it broke with D38142. (However, it's hard to tell because the whole thing was broken already due to the bug in part 1.) The patch moved relocation resolution to a later point in time and didn't apply it to in-memory objects. I am not aware of any reason why we wouldn't resolve relocations per-se, so I made it unconditional here. On Debian, it fixes the bug for me and all tests in `check-lldb` are still fine.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D90769
I found a few cases where entries in the debug_line for a specific line of code have invalid entries (the address is outside of a code section or no section at all) and also valid entries. When this happens lldb might not set the breakpoint because the first line entry it will find in the line table might be the invalid one and since it's range is "invalid" no location is resolved. To get around this I changed the way we parse the line sequences to ignore those starting at an address under the first code segment.
Greg suggested to implement it this way so we don't need to check all sections for every line sequence.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D87172
This would be reproducible in future DWZ category of the testsuite as:
Failed Tests (1):
lldb-api :: python_api/symbol-context/two-files/TestSymbolContextTwoFiles.py
Differential Revision: https://reviews.llvm.org/D91014
This test requires running under the Python we built against (which is
easy) and setting up the PYTHONPATH (which is not worth it for this
simple test).
This patch changes the implementation of Lua's `print()` function to
respect `io.stdout`.
The original implementation uses `lua_writestring()` internally, which is
hardcoded to `stdout`.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D90787
The new FreeBSDRemote plugin has reached feature parity on i386
and amd64 targets. Use it by default on these architectures, while
allowing the use of the legacy plugin via FREEBSD_LEGACY_PLUGIN envvar.
Revisit the method of switching plugins. Apparently, the return value
of PlatformFreeBSD::CanDebugProcess() is what really decides whether
the legacy or the new plugin is used.
Update the test status. Reenable the tests that were previously
disabled on FreeBSD and do not cause hangs or are irrelevant to FreeBSD.
Mark all tests that fail reliably as expectedFailure. For now, tests
that are flaky (i.e. produce unstable results) are left enabled
and cause unpredictable test failures.
Differential Revision: https://reviews.llvm.org/D90757