Since these are scoped enumerators, they have to be prefixed by DeclaratorContext, so lets remove Context from the name, and return some characters to the multiverse.
Patch was reviewed here: https://reviews.llvm.org/D91011
Thank you to aaron, bruno, wyatt and barry for indulging me.
C++ unqualified name lookup searches template parameter scopes
immediately after finishing searching the entity the parameters belong
to. (Eg, for a class template, you search the template parameter scope
after looking in that class template and its base classes and before
looking in the scope containing the class template.) This is complicated
by the fact that scope lookup within a template parameter scope looks in
a different sequence of places prior to reaching the end of the
declarator-id in the template declaration.
We used to approximate the proper lookup rule with a hack in the scope /
decl context walk inside name lookup. Now we instead compute the lookup
parent for each template parameter scope.
In order to get this right, we now make sure to enter a distinct Scope
for each template parameter scope, and make sure to re-enter the
enclosing class scopes properly when handling delay-parsed regions
within a class.
We weren't re-entering template scopes in the right order, causing this
to break self-host with -fdelayed-template-parsing.
This reverts commit 237c2a23b6.
C++ unqualified name lookup searches template parameter scopes
immediately after finishing searching the entity the parameters belong
to. (Eg, for a class template, you search the template parameter scope
after looking in that class template and its base classes and before
looking in the scope containing the class template.) This is complicated
by the fact that scope lookup within a template parameter scope looks in
a different sequence of places prior to reaching the end of the
declarator-id in the template declaration.
We used to approximate the proper lookup rule with a hack in the scope /
decl context walk inside name lookup. Now we instead compute the lookup
parent for each template parameter scope. This gets the right answer and
as a bonus is substantially simpler and more uniform.
In order to get this right, we now make sure to enter a distinct Scope
for each template parameter scope. (The fact that we didn't before was
already a bug, but not really observable most of the time, since
template parameters can't shadow each other.)
in the token stream.
Previously we deleted all template-id annotations at the end of each
top-level declaration. That doesn't work: we can do some lookahead and
form a template-id annotation, and then roll back that lookahead, parse,
and decide that we're missing a semicolon at the end of a top-level
declaration, before we reach the annotation token. In that situation,
we'd end up parsing the annotation token after deleting its associated
data, leading to various forms of badness.
We now only delete template-id annotations if the preprocessor can
assure us that there are no annotation tokens left in the token stream
(or if we're already at EOF). This lets us delete the annotation tokens
earlier in a lot of cases; we now clean them up at the end of each
statement and class member, not just after each top-level declaration.
This also permitted some simplification of the delay-parsed templates
cleanup code.
Instead of bailing out of parsing when we encounter an invalid
template-name or template arguments in a template-id, produce an
annotation token describing the invalid construct.
This avoids duplicate errors and generally allows us to recover better.
In principle we should be able to extend this to store some kinds of
invalid template-id in the AST for tooling use, but that isn't handled
as part of this change.
Suppress those diagnostics if lhs of a member expression contains
errors. Typo correction produces dependent expressions even in
non-template code, that led to spurious diagnostics before.
previous:
/tmp/t.cpp:6:17: error: use 'template' keyword to treat 'f' as a dependent template name
auto a = bilder.f<int>();
^
template
/tmp/t.cpp:6:10: error: use of undeclared identifier 'bilder'; did you mean 'builder'?
auto a = bilder.f<int>();
^~~~~~
builder
vs now:
/tmp/t.cpp:6:10: error: use of undeclared identifier 'bilder'; did you mean 'builder'?
auto a = bilder.f<int>();
^~~~~~
builder
Original patch from Ilya.
Reviewers: sammccall
Reviewed By: sammccall
Tags: #clang
Differential Revision: https://reviews.llvm.org/D65592
TryAnnotateTypeConstraint could annotate a template-id which doesn't end up being a type-constraint,
in which case control flow would incorrectly flow into ParseImplicitInt.
Reenter the loop in this case.
Enable relevant tests for C++20. This required disabling typo-correction during TryAnnotateTypeConstraint
and changing a test case which is broken due to a separate bug (will be reported and handled separately).
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
Now with concepts support merged and mostly complete, we do not need -fconcepts-ts
(which was also misleading as we were not implementing the TS) and can enable
concepts features under C++2a. A warning will be generated if users still attempt
to use -fconcepts-ts.
This patch implements P1141R2 "Yet another approach for constrained declarations".
General strategy for this patch was:
- Expand AutoType to include optional type-constraint, reflecting the wording and easing the integration of constraints.
- Replace autos in parameter type specifiers with invented parameters in GetTypeSpecTypeForDeclarator, using the same logic
previously used for generic lambdas, now unified with abbreviated templates, by:
- Tracking the template parameter lists in the Declarator object
- Tracking the template parameter depth before parsing function declarators (at which point we can match template
parameters against scope specifiers to know if we have an explicit template parameter list to append invented parameters
to or not).
- When encountering an AutoType in a parameter context we check a stack of InventedTemplateParameterInfo structures that
contain the info required to create and accumulate invented template parameters (fields that were already present in
LambdaScopeInfo, which now inherits from this class and is looked up when an auto is encountered in a lambda context).
Resubmit after fixing MSAN failures caused by incomplete initialization of AutoTypeLocs in TypeSpecLocFiller.
Differential Revision: https://reviews.llvm.org/D65042
This patch implements P1141R2 "Yet another approach for constrained declarations".
General strategy for this patch was:
- Expand AutoType to include optional type-constraint, reflecting the wording and easing the integration of constraints.
- Replace autos in parameter type specifiers with invented parameters in GetTypeSpecTypeForDeclarator, using the same logic
previously used for generic lambdas, now unified with abbreviated templates, by:
- Tracking the template parameter lists in the Declarator object
- Tracking the template parameter depth before parsing function declarators (at which point we can match template
parameters against scope specifiers to know if we have an explicit template parameter list to append invented parameters
to or not).
- When encountering an AutoType in a parameter context we check a stack of InventedTemplateParameterInfo structures that
contain the info required to create and accumulate invented template parameters (fields that were already present in
LambdaScopeInfo, which now inherits from this class and is looked up when an auto is encountered in a lambda context).
Resubmit after incorrect check in NonTypeTemplateParmDecl broke lldb.
Differential Revision: https://reviews.llvm.org/D65042
This patch implements P1141R2 "Yet another approach for constrained declarations".
General strategy for this patch was:
- Expand AutoType to include optional type-constraint, reflecting the wording and easing the integration of constraints.
- Replace autos in parameter type specifiers with invented parameters in GetTypeSpecTypeForDeclarator, using the same logic
previously used for generic lambdas, now unified with abbreviated templates, by:
- Tracking the template parameter lists in the Declarator object
- Tracking the template parameter depth before parsing function declarators (at which point we can match template
parameters against scope specifiers to know if we have an explicit template parameter list to append invented parameters
to or not).
- When encountering an AutoType in a parameter context we check a stack of InventedTemplateParameterInfo structures that
contain the info required to create and accumulate invented template parameters (fields that were already present in
LambdaScopeInfo, which now inherits from this class and is looked up when an auto is encountered in a lambda context).
Differential Revision: https://reviews.llvm.org/D65042
A TemplateIdAnnotation represents only a template-id, not a
nested-name-specifier plus a template-id. Don't make a redundant copy of
the CXXScopeSpec and store it on the template-id annotation.
This slightly improves error recovery by more properly handling the case
where we would form an invalid CXXScopeSpec while parsing a typename
specifier, instead of accidentally putting the token stream into a
broken "annot_template_id with a scope specifier, but with no preceding
annot_cxxscope token" state.
Add support for type-constraints in template type parameters.
Also add support for template type parameters as pack expansions (where the type constraint can now contain an unexpanded parameter pack).
Differential Revision: https://reviews.llvm.org/D44352
Function trailing requires clauses now parsed, supported in overload resolution and when calling, referencing and taking the address of functions or function templates.
Differential Revision: https://reviews.llvm.org/D43357
Summary:
Clang uses the location identifier should be inserted for declarator
decls when a decl is unnamed. But for type template and template template
paramaters it uses the location of "typename/class" keyword, which makes it hard
for tooling to insert/change parameter names.
This change tries to unify these two cases by making template parameter
parsing and sourcerange operations similar to function params/declarator decls.
Reviewers: ilya-biryukov
Subscribers: arphaman, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D68143
llvm-svn: 373340
Summary:
By adding a hook to consume all tokens produced by the preprocessor.
The intention of this change is to make it possible to consume the
expanded tokens without re-runnig the preprocessor with minimal changes
to the preprocessor and minimal performance penalty when preprocessing
without recording the tokens.
The added hook is very low-level and reconstructing the expanded token
stream requires more work in the client code, the actual algorithm to
collect the tokens using this hook can be found in the follow-up change.
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: eraman, nemanjai, kbarton, jsji, riccibruno, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D59885
llvm-svn: 361007
template name is not visible to unqualified lookup.
In order to support this without a severe degradation in our ability to
diagnose typos in template names, this change significantly restructures
the way we handle template-id-shaped syntax for which lookup of the
template name finds nothing.
Instead of eagerly diagnosing an undeclared template name, we now form a
placeholder template-name representing a name that is known to not find
any templates. When the parser sees such a name, it attempts to
disambiguate whether we have a less-than comparison or a template-id.
Any diagnostics or typo-correction for the name are delayed until its
point of use.
The upshot should be a small improvement of our diagostic quality
overall: we now take more syntactic context into account when trying to
resolve an undeclared identifier on the left hand side of a '<'. In
fact, this works well enough that the backwards-compatible portion (for
an undeclared identifier rather than a lookup that finds functions but
no function templates) is enabled in all language modes.
llvm-svn: 360308
This change adds hierarchical "time trace" profiling blocks that can be visualized in Chrome, in a "flame chart" style. Each profiling block can have a "detail" string that for example indicates the file being processed, template name being instantiated, function being optimized etc.
This is taken from GitHub PR: https://github.com/aras-p/llvm-project-20170507/pull/2
Patch by Aras Pranckevičius.
Differential Revision: https://reviews.llvm.org/D58675
llvm-svn: 357340
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Only push the outermost record as a DeclContext when parsing a function
body. See the comments in Sema::getContainingDC about the way the parser
pushes contexts. This is intended to match the behavior the parser
normally displays where it parses all method bodies from all nested
classes at the end of the outermost class, when all nested classes are
complete.
Fixes PR38460.
llvm-svn: 347627
We need to consider all tokens that start with '>' when
we're checking for the end of an empty template argument list.
Differential Revision: https://reviews.llvm.org/D52321
llvm-svn: 342752
Given 'typename T typename U', we would correctly diagnose the missing
comma, but incorrectly disambiguate the first parameter as being a
non-type parameter and complain that the 'T' is not a qualified-id.
See also gcc.gnu.org/PR86998.
llvm-svn: 340074
Basically, "AttributeList" loses all list-like mechanisms, ParsedAttributes is
switched to use a TinyPtrVector (and a ParsedAttributesView is created to
have a non-allocating attributes list). DeclaratorChunk gets the later kind,
Declarator/DeclSpec keep ParsedAttributes.
Iterators are added to the ParsedAttribute types so that for-loops work.
llvm-svn: 336945
binary operator.
Factor out the checking for a comma within potential angle brackets and
also call it from contexts where we parse a comma-separated list of
arguments or initializers.
llvm-svn: 335699
This is similar to the LLVM change https://reviews.llvm.org/D46290.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\@brief'); do perl -pi -e 's/\@brief //g' $i & done
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46320
llvm-svn: 331834
When a '>>' token is split into two '>' tokens (in C++11 onwards), or (as an
extension) when we do the same for other tokens starting with a '>', we can't
just use a location pointing to the first '>' as the location of the split
token, because that would result in our miscomputing the length and spelling
for the token. As a consequence, for example, a refactoring replacing 'A<X>'
with something else would sometimes replace one character too many, and
similarly diagnostics highlighting a template-id source range would highlight
one character too many.
Fix this by creating an expansion range covering the first character of the
'>>' token, whose spelling is '>'. For this to work, we generalize the
expansion range of a macro FileID to be either a token range (the common case)
or a character range (used in this new case).
llvm-svn: 331155
Avoiding
error: no matching function for call to 'makeArrayRef'
at
../tools/clang/lib/Parse/ParseTemplate.cpp:373:17
By using a local C array as input to makeArrayRef.
Not sure if this is the best solution, but it makes the code
compile again.
llvm-svn: 330802
This patch is a tweak of changyu's patch: https://reviews.llvm.org/D40381. It differs in that the recognition of the 'concept' token is moved into the machinery that recognizes declaration-specifiers - this allows us to leverage the attribute handling machinery more seamlessly.
See the test file to get a sense of the basic parsing that this patch supports.
There is much more work to be done before concepts are usable...
Thanks Changyu!
llvm-svn: 330794
The current support of the feature produces only 2 lines in report:
-Some general Code Generation Time;
-Total time of Backend Consumer actions.
This patch extends Clang time report with new lines related to Preprocessor, Include Filea Search, Parsing, etc.
Differential Revision: https://reviews.llvm.org/D43578
llvm-svn: 329684
Specifically, we would not properly parse these types within template arguments
(for non-type template parameters), and in tentative parses. Fixing both of
these essentially requires that we parse deduced template specialization types
as types in all contexts, even in template argument lists -- in particular,
tentative parsing may look ahead and annotate a deduced template specialization
type before we figure out that we're actually supposed to treat the tokens as a
template-name. We deal with this by simply permitting deduced template
specialization types when parsing template arguments, and converting them to
template template arguments.
llvm-svn: 326299