This patch implements recently ratified extension Zmmul, a subextension
of M (Integer Multiplication and Division) consisting only
multiplication part of it.
Differential Revision: https://reviews.llvm.org/D103313
Reviewed By: craig.topper, jrtc27, asb
Otherwise the brace was detected as a function brace, not wrong per se,
but when directly calling the lambda the calling parens were put on the
next line.
Differential Revision: https://reviews.llvm.org/D129946
This caused build failures when building Clang and libc++ together on Mac:
fatal error: 'experimental/memory_resource' file not found
See the code review for details. Reverting until the problem and how to
solve it is better understood.
(Updates to some test files were not reverted, since they seemed
unrelated and were later updated by 340b48b267b96.)
> This is the first part of a plan to ship experimental features
> by default while guarding them behind a compiler flag to avoid
> users accidentally depending on them. Subsequent patches will
> also encompass incomplete features (such as <format> and <ranges>)
> in that categorization. Basically, the idea is that we always
> build and ship the c++experimental library, however users can't
> use what's in it unless they pass the `-funstable` flag to Clang.
>
> Note that this patch intentionally does not start guarding
> existing <experimental/FOO> content behind the flag, because
> that would merely break users that might be relying on such
> content being in the headers unconditionally. Instead, we
> should start guarding new TSes behind the flag, and get rid
> of the existing TSes we have by shipping their Standard
> counterpart.
>
> Also, this patch must jump through a few hoops like defining
> _LIBCPP_ENABLE_EXPERIMENTAL because we still support compilers
> that do not implement -funstable yet.
>
> Differential Revision: https://reviews.llvm.org/D128927
This reverts commit bb939931a1.
[clang] Emit SARIF Diagnostics: Create clang::SarifDocumentWriter interface
Create an interface for writing SARIF documents from within clang:
The primary intent of this change is to introduce the interface
clang::SarifDocumentWriter, which allows incrementally adding
diagnostic data to a JSON backed document. The proposed interface is
not yet connected to the compiler internals, which will be covered in
future work. As such this change will not change the input/output
interface of clang.
This change also introduces the clang::FullSourceRange type that is
modeled after clang::SourceRange + clang::FullSourceLoc, this is useful
for packaging a pair of clang::SourceLocation objects with their
corresponding SourceManagers.
Previous discussions:
RFC for this change: https://lists.llvm.org/pipermail/cfe-dev/2021-March/067907.htmlhttps://lists.llvm.org/pipermail/cfe-dev/2021-July/068480.html
SARIF Standard (2.1.0):
https://docs.oasis-open.org/sarif/sarif/v2.1.0/os/sarif-v2.1.0-os.html
Differential Revision: https://reviews.llvm.org/D109701
Some code [0] consider that trailing arrays are flexible, whatever their size.
Support for these legacy code has been introduced in
f8f6324983 but it prevents evaluation of
__builtin_object_size and __builtin_dynamic_object_size in some legit cases.
Introduce -fstrict-flex-arrays=<n> to have stricter conformance when it is
desirable.
n = 0: current behavior, any trailing array member is a flexible array. The default.
n = 1: any trailing array member of undefined, 0 or 1 size is a flexible array member
n = 2: any trailing array member of undefined or 0 size is a flexible array member
This takes into account two specificities of clang: array bounds as macro id
disqualify FAM, as well as non standard layout.
Similar patch for gcc discuss here: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101836
[0] https://docs.freebsd.org/en/books/developers-handbook/sockets/#sockets-essential-functions
Previously, we forget to handle reachability for deduction guide.
The deduction guide is a hint to the compiler. And the deduction guide
should be able to use if the corresponding template decl is reachable.
No behavior change as GNU ld/gold/ld.lld ignore --dynamic-linker in -r mode.
This change makes the intention clearer as we already suppress --dynamic-linker
for -shared, -static, and -static-pie.
Reviewed by: MaskRay, phosek
Differential Revision: https://reviews.llvm.org/D129714
Unfortunatly fixing leak expose use-after-free if delete more then one
Compilation for the same Driver, so I am changing validateTargetProfile
to create own Driver each time.
The test was added by D122865.
The new driver generated offloadinga actions for each active toolchain.
However, for CUDA and HIP it is possible for the toolchain to be active
but one of the files is not a valid input. This can occur if the user
compiles both a CUDA and C source file in the same compiler invocation.
This patch adds some simple logic to quit if the input is not valid as
well.
Reviewed By: tra, MaskRay
Differential Revision: https://reviews.llvm.org/D129885
When an issue exists in the main file (caller) instead of an included file
(callee), using a `src` pattern applying to the included file may be
inappropriate if it's the caller's responsibility. Add `mainfile` prefix to check
the main filename.
For the example below, the issue may reside in a.c (foo should not be called
with a misaligned pointer or foo should switch to an unaligned load), but with
`src` we can only apply to the innocent callee a.h. With this patch we can use
the more appropriate `mainfile:a.c`.
```
//--- a.h
// internal linkage
static inline int load(int *x) { return *x; }
//--- a.c, -fsanitize=alignment
#include "a.h"
int foo(void *x) { return load(x); }
```
See the updated clang/docs/SanitizerSpecialCaseList.rst for a caveat due
to C++ vague linkage functions.
Reviewed By: #sanitizers, kstoimenov, vitalybuka
Differential Revision: https://reviews.llvm.org/D129832
Summary: Introduce a new function 'clang_analyzer_value'. It emits a report that in turn prints a RangeSet or APSInt associated with SVal. If there is no associated value, prints "n/a".
Summary: Sorted some handler-functions into more appropriate visitor functions of the SymbolicRangeInferrer.
- Spread `getRangeForNegatedSub` body over several visitor functions: `VisitSymExpr`, `VisitSymIntExpr`, `VisitSymSymExpr`.
- Moved `getRangeForComparisonSymbol` from `infer` to `VisitSymSymExpr`.
Differential Revision: https://reviews.llvm.org/D129678
The time profiler traces the stages during the clang compile
process. Each compiling stage of a single source file
corresponds to a separately .json file which holds its
time tracing data. However, the .json files are stored in the
same path/directory as its corresponding stage's '-o' option.
For example, if we compile the "demo.cc" to "demo.o" with option
"-o /tmp/demo.o", the time trace data file path is "/tmp/demo.json".
A typical c++ project can contain multiple source files in different
path, but all the json files' paths can be a mess.
The option "-ftime-trace=<value>" allows you to specify where the json
files should be stored. This allows the users to place the time trace
data files of interest in the desired location for further data analysis.
Usage:
- clang/clang++ -ftime-trace ...
- clang/clang++ -ftime-trace=the-directory-you-want ...
- clang/clang++ -ftime-trace=the-directory-you-want/ ...
- clang/clang++ -ftime-trace=the-full-file-path-you-want ...
Differential Revision: https://reviews.llvm.org/D128048
After b646f09555,
the added regression test started being formatted as-if the
multiplication `*` was a pointer. This adapts the heuristic to
distinguish between these two cases.
Reviewed By: jackhong12, curdeius, HazardyKnusperkeks, owenpan
Differential Revision: https://reviews.llvm.org/D129771
TokenManager defines Token interfaces for the clang syntax-tree. This is the level
of abstraction that the syntax-tree should use to operate on Tokens.
It decouples the syntax-tree from a particular token implementation (TokenBuffer
previously). This enables us to use a different underlying token implementation
for the syntax Leaf node -- in clang pseudoparser, we want to produce a
syntax-tree with its own pseudo::Token rather than syntax::Token.
Differential Revision: https://reviews.llvm.org/D128411
Following some recent discussions, this changes the representation
of callbrs in IR. The current blockaddress arguments are replaced
with `!` label constraints that refer directly to callbr indirect
destinations:
; Before:
%res = callbr i8* asm "", "=r,r,i"(i8* %x, i8* blockaddress(@test8, %foo))
to label %asm.fallthrough [label %foo]
; After:
%res = callbr i8* asm "", "=r,r,!i"(i8* %x)
to label %asm.fallthrough [label %foo]
The benefit of this is that we can easily update the successors of
a callbr, without having to worry about also updating blockaddress
references. This should allow us to remove some limitations:
* Allow unrolling/peeling/rotation of callbr, or any other
clone-based optimizations
(https://github.com/llvm/llvm-project/issues/41834)
* Allow duplicate successors
(https://github.com/llvm/llvm-project/issues/45248)
This is just the IR representation change though, I will follow up
with patches to remove limtations in various transformation passes
that are no longer needed.
Differential Revision: https://reviews.llvm.org/D129288
This reverts commit 7c51f02eff because it
stills breaks the LLDB tests. This was re-landed without addressing the
issue or even agreement on how to address the issue. More details and
discussion in https://reviews.llvm.org/D112374.
Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.
The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.
An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.
---
Troubleshooting list to deal with any breakage seen with this patch:
1) The most likely effect one would see by this patch is a change in how
a type is printed. The type printer will, by design and default,
print types as written. There are customization options there, but
not that many, and they mainly apply to how to print a type that we
somehow failed to track how it was written. This patch fixes a
problem where we failed to distinguish between a type
that was written without any elaborated-type qualifiers,
such as a 'struct'/'class' tags and name spacifiers such as 'std::',
and one that has been stripped of any 'metadata' that identifies such,
the so called canonical types.
Example:
```
namespace foo {
struct A {};
A a;
};
```
If one were to print the type of `foo::a`, prior to this patch, this
would result in `foo::A`. This is how the type printer would have,
by default, printed the canonical type of A as well.
As soon as you add any name qualifiers to A, the type printer would
suddenly start accurately printing the type as written. This patch
will make it print it accurately even when written without
qualifiers, so we will just print `A` for the initial example, as
the user did not really write that `foo::` namespace qualifier.
2) This patch could expose a bug in some AST matcher. Matching types
is harder to get right when there is sugar involved. For example,
if you want to match a type against being a pointer to some type A,
then you have to account for getting a type that is sugar for a
pointer to A, or being a pointer to sugar to A, or both! Usually
you would get the second part wrong, and this would work for a
very simple test where you don't use any name qualifiers, but
you would discover is broken when you do. The usual fix is to
either use the matcher which strips sugar, which is annoying
to use as for example if you match an N level pointer, you have
to put N+1 such matchers in there, beginning to end and between
all those levels. But in a lot of cases, if the property you want
to match is present in the canonical type, it's easier and faster
to just match on that... This goes with what is said in 1), if
you want to match against the name of a type, and you want
the name string to be something stable, perhaps matching on
the name of the canonical type is the better choice.
3) This patch could exposed a bug in how you get the source range of some
TypeLoc. For some reason, a lot of code is using getLocalSourceRange(),
which only looks at the given TypeLoc node. This patch introduces a new,
and more common TypeLoc node which contains no source locations on itself.
This is not an inovation here, and some other, more rare TypeLoc nodes could
also have this property, but if you use getLocalSourceRange on them, it's not
going to return any valid locations, because it doesn't have any. The right fix
here is to always use getSourceRange() or getBeginLoc/getEndLoc which will dive
into the inner TypeLoc to get the source range if it doesn't find it on the
top level one. You can use getLocalSourceRange if you are really into
micro-optimizations and you have some outside knowledge that the TypeLocs you are
dealing with will always include some source location.
4) Exposed a bug somewhere in the use of the normal clang type class API, where you
have some type, you want to see if that type is some particular kind, you try a
`dyn_cast` such as `dyn_cast<TypedefType>` and that fails because now you have an
ElaboratedType which has a TypeDefType inside of it, which is what you wanted to match.
Again, like 2), this would usually have been tested poorly with some simple tests with
no qualifications, and would have been broken had there been any other kind of type sugar,
be it an ElaboratedType or a TemplateSpecializationType or a SubstTemplateParmType.
The usual fix here is to use `getAs` instead of `dyn_cast`, which will look deeper
into the type. Or use `getAsAdjusted` when dealing with TypeLocs.
For some reason the API is inconsistent there and on TypeLocs getAs behaves like a dyn_cast.
5) It could be a bug in this patch perhaps.
Let me know if you need any help!
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D112374
AcceptedPublic
Currently CXXMethodDecl::isMoveAssignmentOperator() does not look though type
sugar and so if the parameter is a type alias it will not be able to detect
that the method is a move assignment operator. This PR fixes that and adds a set
of tests that covers that we correctly detect special member functions when
defaulting or deleting them.
This fixes: https://github.com/llvm/llvm-project/issues/56456
Differential Revision: https://reviews.llvm.org/D129591
When removing an r_brace that is the first token of an annotated line, if the
line above ends with a line comment, clang-format generates invalid code by
merging the tokens after the r_brace into the line comment.
Fixes#56488.
Differential Revision: https://reviews.llvm.org/D129742
Introducing the support for evaluating the constructor
of every element in an array. The idea is to record the
index of the current array member being constructed and
create a loop during the analysis. We looping over the
same CXXConstructExpr as many times as many elements
the array has.
Differential Revision: https://reviews.llvm.org/D127973