Normally, the Scheduler prioritizes older instructions over younger instructions
during the instruction issue stage. In one particular case where a dependent
instruction had a schedule read-advance associated to one of the input operands,
this rule was not correctly applied.
This patch fixes the issue and adds a test to verify that we don't regress that
particular case.
llvm-svn: 330032
Summary: This enables debug fission on implicit ThinLTO when linked with gold. It will put the .dwo files in a directory specified by user.
Reviewers: tejohnson, pcc, dblaikie
Reviewed By: pcc
Subscribers: JDevlieghere, mehdi_amini, inglorion
Differential Revision: https://reviews.llvm.org/D44792
llvm-svn: 329988
Summary:
llvm-diff incorrectly reports that there's a diff when input IR contains undef/zeroinitializer/constantvector/indirectbr.
(This happens even if two identical files are given, e.g. `llvm-diff x.ll x.ll`)
This is fix to the bug report https://bugs.llvm.org/show_bug.cgi?id=33623 .
Reviewers: dexonsmith, rjmccall
Reviewed By: rjmccall
Subscribers: chenwj, mgrang, llvm-commits
Differential Revision: https://reviews.llvm.org/D34856
llvm-svn: 329957
Swithces from using the command line library to using TableGen. This will allow
llvm-strip to exist and allow refinements of the command line syntax.
Differential Revision: https://reviews.llvm.org/D44236
llvm-svn: 329863
This patch moves the logic that collects and analyzes dispatch events to the
DispatchStatistics view.
Added flag -dispatch-stats to print statistics related to the dispatch logic.
llvm-svn: 329708
This patch teaches llvm-mca how to parse code comments in search for special
"markers" used to select regions of code.
Example:
# LLVM-MCA-BEGIN My Code Region
....
# LLVM-MCA-END
The MCAsmLexer now delegates to an object of class MCACommentParser (i.e. an
AsmCommentConsumer) the parsing of code comments to search for begin/end code
region markers.
A comment starting with substring "LLVM-MCA-BEGIN" marks the beginning of a new
region of code. A comment starting with substring "LLVM-MCA-END" marks the end
of the last region.
This implementation doesn't allow regions to overlap. Each region can have a
optional description; internally, each region is identified by a range of source
code locations (SMLoc).
MCInst objects are added to a region R only if the source location for the
MCInst is in the range of locations specified by R.
By default, the tool allocates an implicit "Default" code region which contains
every source location. See new tests llvm-mca-marker-*.s for a few examples.
A new Backend object is created for every region. So, the analysis is conducted
on every parsed code region. The final report is the union of the reports
generated for every code region. Note that empty regions are skipped.
Special "[#] Code Region - ..." strings are used in the report to mark the
portion which is specific to a code region only. For example, see
llvm-mca-markers-5.s.
Differential Revision: https://reviews.llvm.org/D45433
llvm-svn: 329590
Summary:
The option is helpful for large projects where it's not feasible to specify sources which
user would like to see in the report. Instead, it allows to black-list specific sources via
regular expressions (e.g. now it's possible to skip all files that have "test" in its name).
This also partially fixes https://bugs.llvm.org/show_bug.cgi?id=34277
Reviewers: vsk, morehouse, liaoyuke
Reviewed By: vsk
Subscribers: kcc, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D43907
llvm-svn: 329581
With the threading refactoring, loading of object files happens before
checking whether we're dealing with a swift AST. While that's not an
issue per se, it causes a warning to be printed:
warning: /path/to/a.swiftmodule: The file was not recognized as a valid object file
note: while processing /path/to/a.swiftmodule
This suppresses the warning by checking for a Swift AST before
attempting to load is as an object file.
rdar://39240444
llvm-svn: 329553
Summary:
This patch add checks to verify that the information in the name index
entries is consistent with the debug_info section. Specifically, we
check that entries point to valid DIEs, and their names, tags, and
compile units match the information in the debug_info sections.
These checks are only run if the previous checks did not find any errors
in the name index headers. Attempting to proceed with the checks anyway
would likely produce a lot of spurious errors and the verification code
would need to be very careful to avoid crashing.
I also add a couple of more checks to the abbreviation-validation code
to verify that some attributes are always present (an index without a
DW_IDX_die_offset attribute is fairly useless).
The entry verification works only on indexes without any type units - I
haven't attempted to extend it to type units, as we don't even have a
DWARF v5-compatible type unit generator at the moment.
Reviewers: JDevlieghere, aprantl, dblaikie
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45323
llvm-svn: 329392
Summary:
The positions of the DwarfVersion and AddressSize arguments were
reversed, which caused parsing for dwarf opcodes which contained
address-size-dependent operands (such as DW_OP_addr). Amusingly enough,
none of the address-size asserts fired, as dwarf version was always 4,
which is a valid address size.
I ran into this when constructing weird inputs for the DWARF verifier. I
I add a test case as hand-written dwarf -- I am not sure how to trigger
this differently, as having a DW_OP_addr inside a location list is a
fairly non-standard thing to do.
Fixing this error exposed a bug in the debug_loc.dwo parser, which was
always being constructed with an address size of 0. I fix that as well
by following the pattern in the non-dwo parser of picking up the address
size from the first compile unit (which is technically not correct, but
probably good enough in practice).
Reviewers: JDevlieghere, aprantl, dblaikie
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45324
llvm-svn: 329381
This patch adds the ability to describe properties of the hardware retire
control unit.
Tablegen class RetireControlUnit has been added for this purpose (see
TargetSchedule.td).
A RetireControlUnit specifies the size of the reorder buffer, as well as the
maximum number of opcodes that can be retired every cycle.
A zero (or negative) value for the reorder buffer size means: "the size is
unknown". If the size is unknown, then llvm-mca defaults it to the value of
field SchedMachineModel::MicroOpBufferSize. A zero or negative number of
opcodes retired per cycle means: "there is no restriction on the number of
instructions that can be retired every cycle".
Models can optionally specify an instance of RetireControlUnit. There can only
be up-to one RetireControlUnit definition per scheduling model.
Information related to the RCU (RetireControlUnit) is stored in (two new fields
of) MCExtraProcessorInfo. llvm-mca loads that information when it initializes
the DispatchUnit / RetireControlUnit (see Dispatch.h/Dispatch.cpp).
This patch fixes PR36661.
Differential Revision: https://reviews.llvm.org/D45259
llvm-svn: 329304
Before this patch, the "BackendStatistics" view was responsible for printing the
register file usage (as well as many other statistics).
Now users can enable register file usage statistics using the command line flag
`-register-file-stats`. By default, the tool doesn't print register file
statistics.
llvm-svn: 329083
This patch allows the description of register files in processor scheduling
models. This addresses PR36662.
A new tablegen class named 'RegisterFile' has been added to TargetSchedule.td.
Targets can optionally describe register files for their processors using that
class. In particular, class RegisterFile allows to specify:
- The total number of physical registers.
- Which target registers are accessible through the register file.
- The cost of allocating a register at register renaming stage.
Example (from this patch - see file X86/X86ScheduleBtVer2.td)
def FpuPRF : RegisterFile<72, [VR64, VR128, VR256], [1, 1, 2]>
Here, FpuPRF describes a register file for MMX/XMM/YMM registers. On Jaguar
(btver2), a YMM register definition consumes 2 physical registers, while MMX/XMM
register definitions only cost 1 physical register.
The syntax allows to specify an empty set of register classes. An empty set of
register classes means: this register file models all the registers specified by
the Target. For each register class, users can specify an optional register
cost. By default, register costs default to 1. A value of 0 for the number of
physical registers means: "this register file has an unbounded number of
physical registers".
This patch is structured in two parts.
* Part 1 - MC/Tablegen *
A first part adds the tablegen definition of RegisterFile, and teaches the
SubtargetEmitter how to emit information related to register files.
Information about register files is accessible through an instance of
MCExtraProcessorInfo.
The idea behind this design is to logically partition the processor description
which is only used by external tools (like llvm-mca) from the processor
information used by the llvm machine schedulers.
I think that this design would make easier for targets to get rid of the extra
processor information if they don't want it.
* Part 2 - llvm-mca related *
The second part of this patch is related to changes to llvm-mca.
The main differences are:
1) class RegisterFile now needs to take into account the "cost of a register"
when allocating physical registers at register renaming stage.
2) Point 1. triggered a minor refactoring which lef to the removal of the
"maximum 32 register files" restriction.
3) The BackendStatistics view has been updated so that we can print out extra
details related to each register file implemented by the processor.
The effect of point 3. is also visible in tests register-files-[1..5].s.
Differential Revision: https://reviews.llvm.org/D44980
llvm-svn: 329067
This command can dump the binary contents of a stream to a file.
This is useful when you want to do side-by-side comparisons of
a specific stream from two PDBs to examine the differences between
them. You can export both of them to a file, then open them up
side by side in a hex editor (for example), so as to eliminate any
differences that might arise from the contents being on different
blocks in the PDB.
In subsequent patches I plan to improve the "explain" subcommand
so that you can explain the contents of a binary file that isn't
necessarily a full PDB, but one of these dumped streams, by telling
the subcommand how to interpret the contents.
llvm-svn: 329002
Before, the instruction builder incorrectly assumed that only explicit reads
could have been associated with ReadAdvance entries.
This patch fixes the issue and adds a test to verify it.
llvm-svn: 328972
When running dsymutil as part of your build system, it can be desirable
for warnings to be part of the end product, rather than just being
emitted to the output stream. This patch upstreams that functionality.
Differential revision: https://reviews.llvm.org/D44639
llvm-svn: 328965
Summary:
It seems many CPUs don't implement this instruction as well as the other vector multiplies. Often using a multi uop flow. Silvermont in particular has a 7 uop flow with 11 cycle throughput. Sandy Bridge implements it as a single uop with 5 cycle latency and 1 cycle throughput. But Haswell and later use 2 uops with 10 cycle latency and 2 cycle throughput.
This patch adds a new X86SchedWritePair we can use to tag this instruction separately. I've provided correct information for Silvermont, Btver2, and Sandy Bridge. I've removed the InstRWs for SandyBridge. I've left Haswell/Broadwell/Skylake InstRWs in place because I wasn't sure how to account for the different load latency between 128 and 256 bits. I also left Znver1 InstRWs in place because the existing values don't match Agner's spreadsheet.
I also left a FIXME in the SandyBridge model because it being used for the "generic" model is too optimistic for the 256/512-bit versions since those are multiple uops on all known CPUs.
Reviewers: RKSimon, GGanesh, courbet
Reviewed By: RKSimon
Subscribers: gchatelet, gbedwell, andreadb, llvm-commits
Differential Revision: https://reviews.llvm.org/D44972
llvm-svn: 328914
This will show more detail when using `llvm-pdbutil explain` on an
offset in the DBI or PDB streams. Specifically, it will dig into
individual header fields and substreams to give a more precise
description of what the byte represents.
llvm-svn: 328878
instructions.
In the Btver2 model, there are a few InstRW overrides that don't specify a
ReadAfterLd for the register input operand.
As a result, a few AVX variants of horizontal operations and most vector logic
operations with a folded memory operand don't have a ReadAdvance info associated
to their input register operands.
llvm-svn: 328865
Verify that the ReadAfterLd is correctly applied to FMA and 4-ops variable blend
instructions.
As Craig pointed out in D44726, some Intel models still have to be fixed.
llvm-svn: 328861
This change adds a couple of tests to verify the change introduced by revision
328823 ([X86] Correct the placement of ReadAfterLd in BEXTR and BZHI).
llvm-svn: 328859
As a further refinement on:
r328274 - For llvm-nm and Mach-O files also use function starts info in some cases when printing symbols
we want to special case a redacted LC_MAIN so it is easier to find.
rdar://38978929
llvm-svn: 328820
When we determine that a field belongs to an MSF super block or
the free page map, we wouldn't print any additional information.
With this patch, we now print the value of the field (for super
block fields) or the allocation status of the specified byte (in
the case of offsets in the FPM).
llvm-svn: 328808
We were trying to dig into the super block fields and print a
description of the field at the specified offset, but we were
printing the wrong field due to an off-by-one-field-error.
llvm-svn: 328804
When investigating various things, we often have a file offset
and what to know what's in the PDB at that address. For example
we may be doing a binary comparison of two LLD-generated PDBs
to look for sources of non-determinism, or we may wish to compare
an LLD-generated PDB with a Microsoft generated PDB for sources
of byte-for-byte incompatibility. In these cases, we can do a
binary diff of the two files, and once we find a mismatched byte
we can use explain to figure out what that byte is, immediately
honining in on the problem.
This patch implements this by trying to narrow the meaning of
a particular file offset down as much as possible.
Differential Revision: https://reviews.llvm.org/D44959
llvm-svn: 328799
We should align the value of the field, not the overall section offset.
This distinction matters if one of the debug_names contributions is not
of size which is a multiple of four. The dwarf producers may choose to
emit rounded contributions, but they are not required to do so. In the
latter case, without this patch we would corrupt the parsing state, as
we would adjust the offset even if subsequent contributions contained
correctly rounded augmentation strings.
llvm-svn: 328796
The tool was passing the wrong operand index to method
MCSubtargetInfo::getReadAdvanceCycles(). That method requires a "UseIdx", and
not the operand index. This was found when testing X86 code where instructions
had a memory folded operand.
This patch fixes the issue and adds test read-advance-1.s to ensure that
the ReadAfterLd (a ReadAdvance of 3cy) information is correctly used.
llvm-svn: 328790