Summary:
When replacing a SDValue, we should remove the replaced value from
SoftenedFloats (and possibly the other maps as well?).
When we revisit a Node because it needs analyzing again, we have to
remove all result values from SoftenedFloats (and possibly other maps?).
This fixes the fp128 test failures with expensive checks for X86.
I think we probably should also remove the values from the other maps
(PromotedIntegers and so on), let me know what you think.
Reviewers: baldrick, bogner, davidxl, ab, arsenm, pirama, chh, RKSimon
Reviewed By: chh
Subscribers: danalbert, wdng, srhines, hfinkel, sepavloff, llvm-commits
Differential Revision: https://reviews.llvm.org/D29265
llvm-svn: 296964
xorl + setcc is generally the preferred sequence due to the partial register
stall setcc + movzbl suffers from. As a bonus, it also encodes one byte smaller.
This fixes PR28146.
The original commit tried inserting an 8bit-subreg into a GR32 (not GR32_ABCD)
which was not appreciated by fast regalloc on 32-bit.
llvm-svn: 274802
xorl + setcc is generally the preferred sequence due to the partial register
stall setcc + movzbl suffers from. As a bonus, it also encodes one byte smaller.
This fixes PR28146.
Differential Revision: http://reviews.llvm.org/D21774
llvm-svn: 274692
two fixes with one about error verify-regalloc reported, and
another about live range update of phi after rematerialization.
r265547:
Replace analyzeSiblingValues with new algorithm to fix its compile
time issue. The patch is to solve PR17409 and its duplicates.
analyzeSiblingValues is a N x N complexity algorithm where N is
the number of siblings generated by reg splitting. Although it
causes siginificant compile time issue when N is large, it is also
important for performance since it removes redundent spills and
enables rematerialization.
To solve the compile time issue, the patch removes analyzeSiblingValues
and replaces it with lower cost alternatives containing two parts. The
first part creates a new spill hoisting method in postOptimization of
register allocation. It does spill hoisting at once after all the spills
are generated instead of inside every instance of selectOrSplit. The
second part queries the define expr of the original register for
rematerializaiton and keep it always available during register allocation
even if it is already dead. It deletes those dead instructions only in
postOptimization. With the two parts in the patch, it can remove
analyzeSiblingValues without sacrificing performance.
Patches on top of r265547:
r265610 "Fix the compare-clang diff error introduced by r265547."
r265639 "Fix the sanitizer bootstrap error in r265547."
r265657 "InlineSpiller.cpp: Escap \@ in r265547. [-Wdocumentation]"
Differential Revision: http://reviews.llvm.org/D15302
Differential Revision: http://reviews.llvm.org/D18934
Differential Revision: http://reviews.llvm.org/D18935
Differential Revision: http://reviews.llvm.org/D18936
llvm-svn: 266162
It caused PR27275: "ARM: Bad machine code: Using an undefined physical register"
Also reverting the following commits that were landed on top:
r265610 "Fix the compare-clang diff error introduced by r265547."
r265639 "Fix the sanitizer bootstrap error in r265547."
r265657 "InlineSpiller.cpp: Escap \@ in r265547. [-Wdocumentation]"
llvm-svn: 265790
when DenseMap growed and moved memory. I verified it fixed the bootstrap
problem on x86_64-linux-gnu but I cannot verify whether it fixes
the bootstrap error on clang-ppc64be-linux. I will watch the build-bot
result closely.
Replace analyzeSiblingValues with new algorithm to fix its compile
time issue. The patch is to solve PR17409 and its duplicates.
analyzeSiblingValues is a N x N complexity algorithm where N is
the number of siblings generated by reg splitting. Although it
causes siginificant compile time issue when N is large, it is also
important for performance since it removes redundent spills and
enables rematerialization.
To solve the compile time issue, the patch removes analyzeSiblingValues
and replaces it with lower cost alternatives containing two parts. The
first part creates a new spill hoisting method in postOptimization of
register allocation. It does spill hoisting at once after all the spills
are generated instead of inside every instance of selectOrSplit. The
second part queries the define expr of the original register for
rematerializaiton and keep it always available during register allocation
even if it is already dead. It deletes those dead instructions only in
postOptimization. With the two parts in the patch, it can remove
analyzeSiblingValues without sacrificing performance.
Differential Revision: http://reviews.llvm.org/D15302
llvm-svn: 265547
time issue. The patch is to solve PR17409 and its duplicates.
analyzeSiblingValues is a N x N complexity algorithm where N is
the number of siblings generated by reg splitting. Although it
causes siginificant compile time issue when N is large, it is also
important for performance since it removes redundent spills and
enables rematerialization.
To solve the compile time issue, the patch removes analyzeSiblingValues
and replaces it with lower cost alternatives containing two parts. The
first part creates a new spill hoisting method in postOptimization of
register allocation. It does spill hoisting at once after all the spills
are generated instead of inside every instance of selectOrSplit. The
second part queries the define expr of the original register for
rematerializaiton and keep it always available during register allocation
even if it is already dead. It deletes those dead instructions only in
postOptimization. With the two parts in the patch, it can remove
analyzeSiblingValues without sacrificing performance.
Differential Revision: http://reviews.llvm.org/D15302
llvm-svn: 265309
Part 1 was submitted in http://reviews.llvm.org/D15134.
Changes in this part:
* X86RegisterInfo.td, X86RecognizableInstr.cpp: Add FR128 register class.
* X86CallingConv.td: Pass f128 values in XMM registers or on stack.
* X86InstrCompiler.td, X86InstrInfo.td, X86InstrSSE.td:
Add instruction selection patterns for f128.
* X86ISelLowering.cpp:
When target has MMX registers, configure MVT::f128 in FR128RegClass,
with TypeSoftenFloat action, and custom actions for some opcodes.
Add missed cases of MVT::f128 in places that handle f32, f64, or vector types.
Add TODO comment to support f128 type in inline assembly code.
* SelectionDAGBuilder.cpp:
Fix infinite loop when f128 type can have
VT == TLI.getTypeToTransformTo(Ctx, VT).
* Add unit tests for x86-64 fp128 type.
Differential Revision: http://reviews.llvm.org/D11438
llvm-svn: 255558