This patch simplifies LLVM's lit infrastructure by enforcing an ordering
that a site config is always run before a source-tree config.
A significant amount of the complexity from lit config files arises from
the fact that inside of a source-tree config file, we don't yet know if
the site config has been run. However it is *always* required to run
a site config first, because it passes various variables down through
CMake that the main config depends on. As a result, every config
file has to do a bunch of magic to try to reverse-engineer the location
of the site config file if they detect (heuristically) that the site
config file has not yet been run.
This patch solves the problem by emitting a mapping from source tree
config file to binary tree site config file in llvm-lit.py. Then, during
discovery when we find a config file, we check to see if we have a
target mapping for it, and if so we use that instead.
This mechanism is generic enough that it does not affect external users
of lit. They will just not have a config mapping defined, and everything
will work as normal.
On the other hand, for us it allows us to make many simplifications:
* We are guaranteed that a site config will be executed first
* Inside of a main config, we no longer have to assume that attributes
might not be present and use getattr everywhere.
* We no longer have to pass parameters such as --param llvm_site_config=<path>
on the command line.
* It is future-proof, meaning you don't have to edit llvm-lit.in to add
support for new projects.
* All of the duplicated logic of trying various fallback mechanisms of
finding a site config from the main config are now gone.
One potentially noteworthy thing that was required to implement this
change is that whereas the ninja check targets previously used the first
method to spawn lit, they now use the second. In particular, you can no
longer run lit.py against the source tree while specifying the various
`foo_site_config=<path>` parameters. Instead, you need to run
llvm-lit.py.
Differential Revision: https://reviews.llvm.org/D37756
llvm-svn: 313270
Remove the explicit i686 target that is completely duplicate to
the i386 target, with the latter being used more commonly.
1. The runtime built for i686 will be identical to the one built for
i386.
2. Supporting both -i386 and -i686 suffixes causes unnecessary confusion
on the clang end which has to expect either of them.
3. The checks are based on wrong assumption that __i686__ is defined for
all newer x86 CPUs. In fact, it is only declared when -march=i686 is
explicitly used. It is not available when a more specific (or newer)
-march is used.
Curious enough, if CFLAGS contain -march=i686, the runtime will be built
both for i386 and i686. For any other value, only i386 variant will be
built.
Differential Revision: https://reviews.llvm.org/D26764
llvm-svn: 311924
Remove the explicit i686 target that is completely duplicate to
the i386 target, with the latter being used more commonly.
1. The runtime built for i686 will be identical to the one built for
i386.
2. Supporting both -i386 and -i686 suffixes causes unnecessary confusion
on the clang end which has to expect either of them.
3. The checks are based on wrong assumption that __i686__ is defined for
all newer x86 CPUs. In fact, it is only declared when -march=i686 is
explicitly used. It is not available when a more specific (or newer)
-march is used.
Curious enough, if CFLAGS contain -march=i686, the runtime will be built
both for i386 and i686. For any other value, only i386 variant will be
built.
Differential Revision: https://reviews.llvm.org/D26764
llvm-svn: 311842
Tests that run on the iOS simulator require the dlopen'd dylibs are codesigned. This patch adds the "iossim_compile.py" wrapper that codesigns any produces dylib.
Differential Revision: https://reviews.llvm.org/D32561
llvm-svn: 301617
This patch adds "%env" as a way to express that the environment variable should be set on the target device/simulator. This fixes some test failures when testing on iOS/Simulator.
Differential Revision: https://reviews.llvm.org/D32556
llvm-svn: 301462
This patch adds a basic support for running the ASan lit test suite against an iOS Simulator. This is done by generating more lit.site.cfg configurations into subdirectories such as IOSSimI386Config and IOSSimX86_64Config. These test suites are not added into "check-all" or into "check-asan", they have to be run manually.
Differential Revision: https://reviews.llvm.org/D31477
llvm-svn: 301443
I am working on improving our internal bot infrastructure. One thing
that is unique to the ps4 is that we want to run the posix tests, but
have to execute them on windows.
We currently have a local hack to use a shell on windows, but it is
pretty much impossible to get all all the tools to play nice with all
the heuristics for what is a path and what is a command line option.
This adds support LIT_USE_INTERNAL_SHELL and I will then try to fix
the tests that fail with it but adding the missing features.
llvm-svn: 299077
This predicate compares the host's marketing OS version to one passed as
argument. Currently, only darwin targets are supported. This is done by parsing
the SystemVersion.plist file.
Also added in this patch is some lit testing infrastructure for builtins, which
previously had none. This part of the patch was written by Alex Lorenz (with
some minor modifications).
This patch is part of a feature I proposed here:
http://lists.llvm.org/pipermail/cfe-dev/2016-July/049851.html
Differential revision: https://reviews.llvm.org/D30136
llvm-svn: 297382
Running lit tests and unit tests of ASan and TSan on macOS has very bad performance when running with a high number of threads. This is caused by xnu (the macOS kernel), which currently doesn't handle mapping and unmapping of sanitizer shadow regions (reserved VM which are several terabytes large) very well. The situation is so bad that increasing the number of threads actually makes the total testing time larger. The macOS buildbots are affected by this. Note that we can't easily limit the number of sanitizer testing threads without affecting the rest of the tests.
This patch adds a special "group" into lit, and limits the number of concurrently running tests in this group. This helps solve the contention problem, while still allowing other tests to run in full, that means running lit with -j8 will still with 8 threads, and parallelism is only limited in sanitizer tests.
Differential Revision: https://reviews.llvm.org/D28420
llvm-svn: 292549
This patch starts passing architecture information about a module to llvm-symbolizer and into text reports. This fixes the longstanding x86_64/x86_64h mismatch issue on Darwin.
Differential Revision: https://reviews.llvm.org/D27390
llvm-svn: 291287
The ODR detection in initialization-bug.cc now works on Darwin (due to the recently enabled "live globals" on-by-default), but only if the deployment target is 10.11 or higher. Let's adjust the testcases.
Differential Revision: https://reviews.llvm.org/D26927
llvm-svn: 287581
The '-asan-use-private-alias’ option (disabled by default) option is currently only enabled for Linux and ELF, but it also works on Darwin and Mach-O. This option also fixes a known problem with LTO on Darwin (https://github.com/google/sanitizers/issues/647). This patch enables the support for Darwin (but still keeps it off by default) and adds the LTO test case.
Differential Revision: https://reviews.llvm.org/D24292
llvm-svn: 281472
With this patch 10 out of 13 tests are passing.
Following is the list of failing tests:
struct-simple.cpp
workingset-signal-posix.cpp
mmap-shadow-conflict.c
Reviewed by bruening
Differential: D23799
llvm-svn: 280795
Depends on D21612 which implements the building blocks for the compiler-rt
implementation of the XRay runtime. We use a naive in-memory log of fixed-size
entries that get written out to a log file when the buffers are full, and when
the thread exits.
This implementation lays some foundations on to allowing for more complex XRay
records to be written to the log in subsequent changes. It also defines the format
that the function call accounting tool in D21987 will start building upon.
Once D21987 lands, we should be able to start defining more tests using that tool
once the function call accounting tool becomes part of the llvm distribution.
Reviewers: echristo, kcc, rnk, eugenis, majnemer, rSerge
Subscribers: sdardis, rSerge, dberris, tberghammer, danalbert, srhines, majnemer, llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D21982
llvm-svn: 279805
On OS X 10.11+, we have "automatic interceptors", so we don't need to use DYLD_INSERT_LIBRARIES when launching instrumented programs. However, non-instrumented programs that load TSan late (e.g. via dlopen) are currently broken, as TSan will still try to initialize, but the program will crash/hang at random places (because the interceptors don't work). This patch adds an explicit check that interceptors are working, and if not, it aborts and prints out an error message suggesting to explicitly use DYLD_INSERT_LIBRARIES.
TSan unit tests run with a statically linked runtime, where interceptors don't work. To avoid aborting the process in this case, the patch replaces `DisableReexec()` with a weak `ReexecDisabled()` function which is defined to return true in unit tests.
Differential Revision: http://reviews.llvm.org/D18212
llvm-svn: 263695
On OS X 10.11+, we have "automatic interceptors", so we don't need to use DYLD_INSERT_LIBRARIES when launching instrumented programs. However, non-instrumented programs that load TSan late (e.g. via dlopen) are currently broken, as TSan will still try to initialize, but the program will crash/hang at random places (because the interceptors don't work). This patch adds an explicit check that interceptors are working, and if not, it aborts and prints out an error message suggesting to explicitly use DYLD_INSERT_LIBRARIES.
Differential Revision: http://reviews.llvm.org/D18121
llvm-svn: 263551
Test cases definitely should not care about the complete set of architectures
supported by compiler-rt - they should only care about current
architecture that the test suite was configured for.
Introduce new lit feature to reflect this, and convert tests to use it.
llvm-svn: 261603
This test requires llvm-symbolizer to be able to convert a stack
address into a function name. It is only able to do this if the
DIA SDK was found at cmake time. Add a lit feature for this,
and let the test depend on it.
See also discussion in D15363.
llvm-svn: 258545
This reverts commit r245263, and the change wasn't catched by UBsan.
It also reverts: "[ARM] Also disable stable-runtime check on UBsan,
to use generic one" (r245287), as it didn't fix the UBsan builds.
We need to investigate what's going on before continuing, since this
is breaking all ARM RT buildbots for a while.
llvm-svn: 245292
Summary:
This is consistent with LLVM and Clang. The lit shell isn't a complete
bash implementation, but its behavior is more easily reproducible. This
fixes some ubsan test failures.
One ubsan test requires a shell currently, so I added "REQUIRES: shell",
and the other doesn't work on Windows because it prints a stack trace
and uses a linker that doesn't support DWARF. We can fix it eventually
through other means.
Reviewers: samsonov, pcc
Subscribers: yaron.keren, filcab, llvm-commits
Differential Revision: http://reviews.llvm.org/D11960
llvm-svn: 244837
We will use this for ASan on Windows soon. When the ELF port of LLD
matures, we can add other sanitizer integration tests to make sure they
work with LLD.
llvm-svn: 244549
Specifically:
- Start using %expect_crash.
- Provide an implementation of __ubsan::getDynamicTypeInfoFromVtable
for the Microsoft C++ ABI. This is all that is needed for CFI
diagnostics; UBSan's -fsanitize=vptr also requires an implementation of
__ubsan::checkDynamicType.
- Build the sanitizer runtimes against the release version of the C
runtime, even in debug builds.
- Accommodate demangling differences in tests.
Differential Revision: http://reviews.llvm.org/D11029
llvm-svn: 241745
Specifically:
- Disable int128 tests on Windows, as MSVC cl.exe does not support
int128, so we might not have been able to build the runtime
with int128 support.
- XFAIL the vptr tests as we lack Microsoft ABI support.
- XFAIL enum.cpp as UBSan fails to add the correct instrumentation code
for some reason.
- Modify certain tests that build executables multiple times to use
unique names for each executable. This works around a race condition
observed on Windows.
- Implement IsAccessibleMemoryRange for Windows to fix the last
misaligned.cpp test.
- Introduce a substitution for testing crashes on Windows using
KillTheDoctor.
Differential Revision: http://reviews.llvm.org/D10864
llvm-svn: 241303
Summary:
This patch implements step 1 from
https://llvm.org/bugs/show_bug.cgi?id=23539#c10
I'd appreciate if you could test it on Mac OS and verify that parts of UBSan
runtime that reference C++ ABI symbols are properly excluded, and fix ASan/UBSan
builds.
Test Plan: regression test suite
Reviewers: thakis, hans
Subscribers: llvm-commits, zaks.anna, kubabrecka
Differential Revision: http://reviews.llvm.org/D10621
llvm-svn: 240617
Summary:
This way, if they're set when running ninja check-ubsan (or another
sanitizer), they get cleared before we start invoking the programs.
Reviewers: samsonov, kcc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10229
llvm-svn: 238991
The optimization for -gmlt/-gline-tables-only introduced in r218129 happened to break on Darwin and produce no line number information due to
an incompatibility with dsymutil. ASan tests have been failing because of that and we disabled the use of -gmlt for the tests in r218545. This patch re-enables the use of -gmlt, because we have conditionally disabled the incompatible optimization in LLVM, so -gmlt now works on Darwin. Once Darwin's dsymutil is modified to allow this optimization, we can re-enable the optimization in LLVM.
llvm-svn: 218716
We are interested in verifying that -gline-tables-only provides enough
debug information for verbose error reports and symbolized stack traces.
llvm-svn: 217284
Clang's lit cfg already detects the currently selected SDK via
"xcrun --show-sdk-path". The same thing should be done for compiler-rt tests,
to make them work on recent OS X versions. Instead of duplicating the detection
code, this patch extracts the detection function into a lit.util method.
Patch by Kuba Brecka (kuba.brecka@gmail.com),
reviewed at http://reviews.llvm.org/D4072
llvm-svn: 210534