scoped enumeration members. Later uses of an enumeration temploid as a nested
name specifier should cause its instantiation. Plus some groundwork for
explicit specialization of member enumerations of class templates.
llvm-svn: 152750
data members for deleted or user-provided destructors.
Now it's computed in advance, serialize it, and in passing fix all the other
record DefinitionData flags whose serialization was missing.
llvm-svn: 151441
block pointer that returns a block literal which captures (by copy)
the lambda closure itself. Some aspects of the block literal are left
unspecified, namely the capture variable (which doesn't actually
exist) and the body (which will be filled in by IRgen because it can't
be written as an AST).
Because we're switching to this model, this patch also eliminates
tracking the copy-initialization expression for the block capture of
the conversion function, since that information is now embedded in the
synthesized block literal. -1 side tables FTW.
llvm-svn: 151131
arguments. There are two aspects to this:
- Make sure that when marking the declarations referenced in a
default argument, we don't try to mark local variables, both because
it's a waste of time and because the semantics are wrong: we're not
in a place where we could capture these variables again even if it
did make sense.
- When a lambda expression occurs in a default argument of a
function template, make sure that the corresponding closure type is
considered dependent, so that it will get properly instantiated. The
second bit is a bit of a hack; to fix it properly, we may have to
rearchitect our handling of default arguments, parsing them only
after creating the function definition. However, I'd like to
separate that work from the lambdas work.
llvm-svn: 151076
default arguments of function parameters. This simple-sounding task is
complicated greatly by two issues:
(1) Default arguments aren't actually a real context, so we need to
maintain extra state within lambda expressions to track when a
lambda was actually in a default argument.
(2) At the time that we parse a default argument, the FunctionDecl
doesn't exist yet, so lambda closure types end up in the enclosing
context. It's not clear that we ever want to change that, so instead
we introduce the notion of the "effective" context of a declaration
for the purposes of name mangling.
llvm-svn: 151011
name mangling in the Itanium C++ ABI for lambda expressions is so
dependent on context, we encode the number used to encode each lambda
as part of the lambda closure type, and maintain this value within
Sema.
Note that there are a several pieces still missing:
- We still get the linkage of lambda expressions wrong
- We aren't properly numbering or mangling lambda expressions that
occur in default function arguments or in data member initializers.
- We aren't (de-)serializing the lambda numbering tables
llvm-svn: 150982
pointers and block pointers). We use dummy definitions to keep the
invariant that an implicit, used definition has a body; IR generation
will substitute the actual contents, since they can't be represented
as C++.
For the block pointer case, compute the copy-initialization needed to
capture the lambda object in the block, which IR generation will need
later.
llvm-svn: 150645
instead of having a special-purpose function.
- ActOnCXXDirectInitializer, which was mostly duplication of
AddInitializerToDecl (leading e.g. to PR10620, which Eli fixed a few days
ago), is dropped completely.
- MultiInitializer, which was an ugly hack I added, is dropped again.
- We now have the infrastructure in place to distinguish between
int x = {1};
int x({1});
int x{1};
-- VarDecl now has getInitStyle(), which indicates which of the above was used.
-- CXXConstructExpr now has a flag to indicate that it represents list-
initialization, although this is not yet used.
- InstantiateInitializer was renamed to SubstInitializer and simplified.
- ActOnParenOrParenListExpr has been replaced by ActOnParenListExpr, which
always produces a ParenListExpr. Placed that so far failed to convert that
back to a ParenExpr containing comma operators have been fixed. I'm pretty
sure I could have made a crashing test case before this.
The end result is a (I hope) considerably cleaner design of initializers.
More importantly, the fact that I can now distinguish between the various
initialization kinds means that I can get the tricky generalized initializer
test cases Johannes Schaub supplied to work. (This is not yet done.)
This commit passed self-host, with the resulting compiler passing the tests. I
hope it doesn't break more complicated code. It's a pretty big change, but one
that I feel is necessary.
llvm-svn: 150318
calls to Decl::getASTContext() by Decl's methods will find the TranslationUnitDecl
without crashing due to a parent declaration context still deserializing.
llvm-svn: 150153
the direct serialization of the linked-list structure. Instead, use a
scheme similar to how we handle redeclarations, with redeclaration
lists on the side. This addresses several issues:
- In cases involving mixing and matching of many categories across
many modules, the linked-list structure would not be consistent
across different modules, and categories would get lost.
- If a module is loaded after the class definition and its other
categories have already been loaded, we wouldn't see any categories
in the newly-loaded module.
llvm-svn: 149112
a module file, be sure to also add the first (potentially canonical)
declarations to the chain. This isn't guaranteed to occur because the
first declaration is not listed in the stored redeclaration chain.
llvm-svn: 148314
class/Objective-C protocol suffices get all of the redeclarations of
that declaration wired to the definition, we no longer need to record
the identity of the definition in every declaration. Instead, just
record a bit to indicate whether a particular declaration is the
definition.
llvm-svn: 148224
protocol, record the definition pointer in the canonical declaration
for that entity, and then propagate that definition pointer from the
canonical declaration to all other deserialized declarations. This
approach works well even when deserializing declarations that didn't
know about the original definition, which can occur with modules.
A nice bonus from this definition-deserialization approach is that we
no longer need update records when a definition is added, because the
redeclaration chains ensure that the if any declaration is loaded, the
definition will also get loaded.
llvm-svn: 148223
chains, again. The prior implementation was very linked-list oriented, and
the list-splicing logic was both fairly convoluted (when loading from
multiple modules) and failed to preserve a reasonable ordering for the
redeclaration chains.
This new implementation uses a simpler strategy, where we store the
ordered redeclaration chains in an array-like structure (indexed based
on the first declaration), and use that ordering to add individual
deserialized declarations to the end of the existing chain. That way,
the chain mimics the ordering from its modules, and a bug somewhere is
far less likely to result in a broken linked list.
llvm-svn: 148222
we have a redeclarable type, and only use the new virtual versions
(getPreviousDeclImpl() and getMostRecentDeclImpl()) when we don't have
that type information. This keeps us from penalizing users with strict
type information (and is the moral equivalent of a "final" method).
Plus, settle on the names getPreviousDecl() and getMostRecentDecl()
throughout.
llvm-svn: 148187
virtual functions that provide previous/most recent redeclaration
information for any declaration. Use this to eliminate the redundant,
less efficient getPreviousDecl() functions.
llvm-svn: 148184
Redeclarable<RedeclarableTemplateDecl>, eliminating a bunch of
redeclaration-chain logic both in RedeclarableTemplateDecl and
especially in its (de-)serialization.
As part of this, eliminate the RedeclarableTemplate<> class template,
which was an abstraction that didn't actually save anything.
llvm-svn: 148181
the anonymous namespace to its parent. Semantically, this means that
the anonymous namespaces defined in one module are distinct from the
anonymous namespaces defined in another module.
llvm-svn: 147782
modules. Teach name lookup into namespaces to search in each of the
merged DeclContexts as well as the (now-primary) DeclContext. This
supports the common case where two different modules put something
into the same namespace.
llvm-svn: 147778
to Redeclarable<NamespaceDecl>, so that we benefit from the improveed
redeclaration deserialization and merging logic provided by
Redeclarable<T>. Otherwise, no functionality change.
As a drive-by fix, collapse the "inline" bit into the low bit of the
original namespace/anonymous namespace, saving 8 bytes per
NamespaceDecl on x86_64.
llvm-svn: 147729
chain to determine whether any declaration of the given entity is
visible, eliminating the redundant (and less efficient)
getPreviousDeclaration() implementation.
This tweak uncovered an omission in the handling of
RedeclarableTemplateDecl, where we weren't making sure to search for
additional redeclarations of a template in other module files. Things
would be cleaner if RedeclarableTemplateDecl actually used Redeclarable.
llvm-svn: 147687
into the two unused lower bits of the NextDeclInContext link, dropping
the number of bits in Decl down to 32, and saving 8 bytes per
declaration on x86-64.
llvm-svn: 147660
is hidden from name lookup. The previous hack of tweaking the
ModulePrivate bit when loading a declaration from a hidden submodule
was brittle.
Note that we now have 34 bits in Decl. I'll fix that next.
llvm-svn: 147658
storage for the global declaration ID. Declarations that are parsed
(rather than deserialized) are unaffected, so the number of
declarations that pay this cost tends to be relatively small (since
relatively few declarations are ever deserialized).
This replaces a largish DenseMap within the AST reader. It's not
strictly a win in terms of memory use---not every declaration was
added to that DenseMap in the first place---but it's cleaner to have
this information available for every deserialized declaration, so that
future clients can rely on it.
llvm-svn: 147617
different modules. This implementation is a first approximation of
what we want, using only the function type to determine
equivalence. Later, we'll want to deal with some of the more subtle
issues, including:
- C allows a prototyped declaration and a non-prototyped declaration
to be merged, which we should support
- We may want to ignore the return type when merging, then
complain if the return types differ. Or, we may want to leave it
as it us, so that we only complain if overload resolution
eventually fails.
- C++ non-static member functions need to consider cv-qualifiers
and ref-qualifiers.
- Function templates need to consider the template parameters and
return type.
- Function template specializations will have special rules.
- We can now (accidentally!) end up overloading in C, even without
the "overloadable" attribute, and will need to detect this at some
point.
The actual detection of "is this an overload?" is implemented by
Sema::IsOverload(), which will need to be moved into the AST library
for re-use here. That will be a future refactor.
llvm-svn: 147534
modules, so long as the typedefs refer to the same underlying
type. This ensures that the typedefs end up in the same redeclaration
chain.
To test this, fix name lookup for C/Objective-C to properly deal with
multiple declarations with the same name in the same scope.
llvm-svn: 147533
that if two modules A and B both contain a declaration of a tag such
as
struct X;
and those two modules are unrelated, the two declarations of X will be
merged into a single redeclaration chain.
llvm-svn: 147488
member function template, since the behavior is identical for
ObjCInterfaceDecl and ObjCProtocolDecl. It's expected that all
redeclarable entities will have the same behavior.
llvm-svn: 147450