we did not truncate the value down to i1 with (x&1). This caused a problem
when the computation of x was nontrivial, for example, "add i1 1, 1" would
return 2 instead of 0.
This makes the testcase compile into:
...
llvm_cbe_t = (((llvm_cbe_r == 0u) + (llvm_cbe_r == 0u))&1);
llvm_cbe_u = (((unsigned int )(bool )llvm_cbe_t));
...
instead of:
...
llvm_cbe_t = ((llvm_cbe_r == 0u) + (llvm_cbe_r == 0u));
llvm_cbe_u = (((unsigned int )(bool )llvm_cbe_t));
...
This fixes a miscompilation of mediabench/adpcm/rawdaudio/rawdaudio and
403.gcc with the CBE, regressions from LLVM 2.2. Tanya, please pull
this into the release branch.
llvm-svn: 51813
index for the input pattern in terms of the output pattern. Instead
keep track of how many fixed operands the input pattern actually
has, and have the input matching code pass the output-emitting
function that index value. This simplifies the code, disentangles
variables_ops from the support for predication operations, and
makes variable_ops more robust.
llvm-svn: 51808
insertvalue and extractvalue to use constant indices instead of
Value* indices. And begin updating LangRef.html.
There's definately more to come here, but I'm checking this
basic support in now to make it available to people who are
interested.
llvm-svn: 51806
cases due to an isel deficiency already noted in
lib/Target/X86/README.txt, but they can be matched in this fold-call.ll
testcase, for example.
This is interesting mainly because it exposes a tricky tblgen bug;
tblgen was incorrectly computing the starting index for variable_ops
in the case of a complex pattern.
llvm-svn: 51706
definitions. This adds a new construct, "discard", for indicating
that a named node in the input matching pattern is to be discarded,
instead of corresponding to a node in the output pattern. This
allows tblgen to know where the arguments for the varaible_ops are
supposed to begin.
This fixes "rdar://5791600", whatever that is ;-).
llvm-svn: 51699
the one case that ADCE catches that normal DCE doesn't: non-induction variable
loop computations.
This implementation handles this problem without using postdominators.
llvm-svn: 51668
instruction to execute. This can be used for transformations (like two-address
conversion) to remat an instruction instead of generating a "move"
instruction. The idea is to decrease the live ranges and register pressure and
all that jazz.
llvm-svn: 51660