initializers.
This has some interesting interactions with our existing extensions to
support C99 designated initializers as an extension in C++. Those are
resolved as follows:
* We continue to permit the full breadth of C99 designated initializers
in C++, with the exception that we disallow a partial overwrite of an
initializer with a non-trivially-destructible type. (Full overwrite
is OK, because we won't run the first initializer at all.)
* The C99 extensions are disallowed in SFINAE contexts and during
overload resolution, where they could change the meaning of valid
programs.
* C++20 disallows reordering of initializers. We only check for that for
the simple cases that the C++20 rules permit (designators of the form
'.field_name =' and continue to allow reordering in other cases).
It would be nice to improve this behavior in future.
* All C99 designated initializer extensions produce a warning by
default in C++20 mode. People are going to learn the C++ rules based
on what Clang diagnoses, so it's important we diagnose these properly
by default.
* In C++ <= 17, we apply the C++20 rules rather than the C99 rules, and
so still diagnose C99 extensions as described above. We continue to
accept designated C++20-compatible initializers in C++ <= 17 silently
by default (but naturally still reject under -pedantic-errors).
This is not a complete implementation of P0329R4. In particular, that
paper introduces new non-C99-compatible syntax { .field { init } }, and
we do not support that yet.
This is based on a previous patch by Don Hinton, though I've made
substantial changes when addressing the above interactions.
Differential Revision: https://reviews.llvm.org/D59754
llvm-svn: 370544