The original costs stopped at SSE42, I've added conservative estimates for everything down to SSE1/SSE2 and moved some of the SSE42 costs to SSE41 (really only the addition of PCMPGT makes any difference).
I've also added missing vXi8 costs (we use PHMINPOSUW for i8/i16 for scarily quick results) and 256-bit vector costs for AVX1.
llvm-svn: 360528
On pre-AVX512 targets we can use MOVMSK to extract reduced boolean results. This is properly optimized, annoyingly AVX512 isn't and produces code that is almost as bad as the (unchanged) costs suggest......
Differential Revision: https://reviews.llvm.org/D60403
llvm-svn: 358574
Summary:
This adds a BranchFusion feature to replace the usage of the MacroFusion
for AMD CPUs.
See D59688 for context.
Reviewers: andreadb, lebedev.ri
Subscribers: hiraditya, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59872
llvm-svn: 357171
This adds support for scalarizing these intrinsics as well the X86TargetTransformInfo support to avoid scalarizing them in the cases X86 can handle.
I've omitted handling special cases for constant masks for this first pass. Though CodeGenPrepare can constant fold the branch conditions and remove some of the control flow anyway.
Fixes PR40994 and is covers most of PR3666. Might want to implement constant masks to close that.
Differential Revision: https://reviews.llvm.org/D59180
llvm-svn: 356687
We were just checking pointer size and type primitive size. But this caused unintended things like vectors of half being accepted by masked load/store.
For FP we now explicitly check for only double and float.
For pointers we now let any pointer through. Trusting that only 32 and 64 would be used to generate assembly.
We only check bitwidth after checking that the type is an integer.
llvm-svn: 355667
As this has broken the lto bootstrap build for 3 days and is
showing a significant regression on the Dither_benchmark results (from
the LLVM benchmark suite) -- specifically, on the
BENCHMARK_FLOYD_DITHER_128, BENCHMARK_FLOYD_DITHER_256, and
BENCHMARK_FLOYD_DITHER_512; the others are unchanged. These have
regressed by about 28% on Skylake, 34% on Haswell, and over 40% on
Sandybridge.
This reverts commit r353923.
llvm-svn: 354434
The use of the -mprefer-vector-width=256 command line option mixed with functions
using vector intrinsics can create situations where one function thinks 512 vectors
are legal, but another fucntion does not.
If a 512 bit vector is passed between them via a pointer, its possible ArgumentPromotion
might try to pass by value instead. This will result in type legalization for the two
functions handling the 512 bit vector differently leading to runtime failures.
Had the 512 bit vector been passed by value from clang codegen, both functions would
have been tagged with a min-legal-vector-width=512 function attribute. That would
make them be legalized the same way.
I observed this issue in 32-bit mode where a union containing a 512 bit vector was
being passed by a function that used intrinsics to one that did not. The caller
ended up passing in zmm0 and the callee tried to read it from ymm0 and ymm1.
The fix implemented here is just to consider it a mismatch if two functions
would handle 512 bit differently without looking at the types that are being
considered. This is the easist and safest fix, but it can be improved in the future.
Differential Revision: https://reviews.llvm.org/D58390
llvm-svn: 354376
Tuning flags don't have any effect on the available instructions so aren't a good reason to prevent inlining.
There are also some ISA flags that don't have any intrinsics our ABI requirements that we can exclude. I've put only the most basic ones like cmpxchg16b and lahfsahf. These are interesting because they aren't present in all 64-bit CPUs, but we have codegen workarounds when they aren't present.
Loosening these checks can help with scenarios where a caller has a more specific CPU than a callee. The default tuning flags on our generic 'x86-64' CPU can currently make it inline compatible with other CPUs. I've also added an example test for 'nocona' and 'prescott' where 'nocona' is just a 64-bit capable version of 'prescott' but in 32-bit mode they should be completely compatible.
I've based the implementation here of the similar code in AMDGPU.
Differential Revision: https://reviews.llvm.org/D58371
llvm-svn: 354355
Try to use 64-bit SLP vectorization. In addition to horizontal instrs
this change triggers optimizations for partial vector operations (for instance,
using low halfs of 128-bit registers xmm0 and xmm1 to multiply <2 x float> by
<2 x float>).
Fixes llvm.org/PR32433
llvm-svn: 353923
Followup to D56636, this time handling the UADDSAT case by expanding
uadd.sat(a, b) to umin(a, ~b) + b.
Differential Revision: https://reviews.llvm.org/D56869
llvm-svn: 352409
First step towards PR40376, this patch adds support for getCmpSelInstrCost to use the (optional) Instruction CmpInst predicate to indicate the type of integer comparison we're performing and alter the costs accordingly.
Differential Revision: https://reviews.llvm.org/D57013
llvm-svn: 351810
Prior to SSE41 (and sometimes on AVX1), vector select has to be performed as a ((X & C)|(Y & ~C)) bit select.
Exposes a couple of issues with the min/max reduction costs (which only go down to SSE42 for some reason).
The increase pre-SSE41 selection costs also prevent a couple of tests from firing any longer, so I've either tweaked the target or added AVX tests as well to the existing SSE2 tests.
llvm-svn: 351685
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
There are no test changes here in the existing cost model
regression tests because integer add/sub have a default
legal cost of 1 already. This would break, however, if
we custom lower those ops because the default cost model
assumes that custom-lowered ops are more expensive.
This is similar to the change in rL350403. See discussion
in D56011 for more details. When we enhance that patch to
handle integer ops, we need this cost model change to avoid
unintended diffs here from the custom lowering.
llvm-svn: 350496
Noticed in D56011 - handle the case that scalar fp ops are quicker on P3 than P4
Add the other costs so that we're not relying on the default "is legal/custom" cost logic.
llvm-svn: 350403
Summary:
This allows expanding {7,11,13,14,15,21,22,23,25,26,27,28,29,30,31}-byte memcmp
in just two loads on X86. These were previously calling memcmp.
Reviewers: spatel, gchatelet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D55263
llvm-svn: 349731
This is an initial patch to add a minimum level of support for funnel shifts to the SelectionDAG and to begin wiring it up to the X86 SHLD/SHRD instructions.
Some partial legalization code has been added to handle the case for 'SlowSHLD' where we want to expand instead and I've added a few DAG combines so we don't get regressions from the existing DAG builder expansion code.
Differential Revision: https://reviews.llvm.org/D54698
llvm-svn: 348353
Unlike most cost model functions this code makes a lot of table lookups without using the results from getTypeLegalizationCost. This means 512-bit vectors can be looked up even when the type isn't legal.
This patch adds a check around the two tables that contain 512-bit types to make sure that neither of the types would be split by type legalization. Meaning 512 bit types are illegal. I wanted to write this in a somewhat generic way that uses type legalization query hooks. But if prefered, I can switch to just using is512BitVector and the subtarget feature.
Differential Revision: https://reviews.llvm.org/D54984
llvm-svn: 347786
This fixes some of scalarization costs reported for sext/zext using avx512bw. This does not fix all scalarization costs being reported. Just the worst.
I've restricted this only to combinations of types that are legal with avx512bw like v32i1/v64i1/v32i16/v64i8 and conversions between vXi1 and vXi8/vXi16 with legal vXi8/vXi16 result types.
Differential Revision: https://reviews.llvm.org/D54979
llvm-svn: 347785
We're seeing some issues internally where we sent some intrinsics into the cost model that the getTypeLegalizationCost call fails on, but X86 specific tables don't care about. Our base class implementation takes care of them. We'd just like X86 backend to ignore them.
This patch makes sure the switch returned something X86 cares about and skips the table lookups and type legalization call if not. Probably more efficient too since we don't go scanning the tables for every intrinsic we could possibly see.
Differential Revision: https://reviews.llvm.org/D54711
llvm-svn: 347248
Add support for the expansion of funnelshift/rotates to getIntrinsicInstrCost.
This also required us to move the X86 fshl/fshr costs to the same place as the rotates to avoid expansion and get correct scalarization vs vectorization costs.
llvm-svn: 346854
When we repeat the 2 shifting operands then this is a bit rotation - annoyingly this has to be done in the other getIntrinsicInstrCost than most intrinsics as we need to check the operands are the same.
llvm-svn: 346688
optsize using masked wide loads
Under Opt for Size, the vectorizer does not vectorize interleave-groups that
have gaps at the end of the group (such as a loop that reads only the even
elements: a[2*i]) because that implies that we'll require a scalar epilogue
(which is not allowed under Opt for Size). This patch extends the support for
masked-interleave-groups (introduced by D53011 for conditional accesses) to
also cover the case of gaps in a group of loads; Targets that enable the
masked-interleave-group feature don't have to invalidate interleave-groups of
loads with gaps; they could now use masked wide-loads and shuffles (if that's
what the cost model selects).
Reviewers: Ayal, hsaito, dcaballe, fhahn
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D53668
llvm-svn: 345705
Non-uniform division/remainder handling was added back at D49248/D50765 - so share the 'mul+sub' costs that already exist for uniform cases.
llvm-svn: 345164
interleave-group
The vectorizer currently does not attempt to create interleave-groups that
contain predicated loads/stores; predicated strided accesses can currently be
vectorized only using masked gather/scatter or scalarization. This patch makes
predicated loads/stores candidates for forming interleave-groups during the
Loop-Vectorizer's analysis, and adds the proper support for masked-interleave-
groups to the Loop-Vectorizer's planning and transformation stages. The patch
also extends the TTI API to allow querying the cost of masked interleave groups
(which each target can control); Targets that support masked vector loads/
stores may choose to enable this feature and allow vectorizing predicated
strided loads/stores using masked wide loads/stores and shuffles.
Reviewers: Ayal, hsaito, dcaballe, fhahn, javed.absar
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D53011
llvm-svn: 344472
DIV/REM by constants should always be expanded into mul/shift/etc.
patterns. Unfortunately the ConstantHoisting pass runs too early at a
point where the pattern isn't expanded yet. However after
ConstantHoisting hoisted some immediate the result may not expand
anymore. Also the hoisting typically doesn't make sense because it
operates on immediates that will change completely during the expansion.
Report DIV/REM as TCC_Free so ConstantHoisting will not touch them.
Differential Revision: https://reviews.llvm.org/D53174
llvm-svn: 344315