ASTContext::DeclAttrs. Otherwise, iterators will go stale when the
DenseMap reallocates, which can cause crashes when, e.g., looping over
the attributes in a template to instantiate them and add the results
to the instantiation of that template.
llvm-svn: 112488
The extra data stored on user-defined literal Tokens is stored in extra
allocated memory, which is managed by the PreprocessorLexer because there isn't
a better place to put it that makes sure it gets deallocated, but only after
it's used up. My testing has shown no significant slowdown as a result, but
independent testing would be appreciated.
llvm-svn: 112458
For large floats/integers, APFloat/APInt will allocate memory from the heap to represent these numbers.
Unfortunately, when we use a BumpPtrAllocator to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
the APFloat/APInt values will never get freed.
I introduce the class 'APNumericStorage' which uses ASTContext's allocator for memory allocation and is used internally by FloatingLiteral/IntegerLiteral.
Fixes rdar://7637185
llvm-svn: 112361
an '&' expression from the second caller of ActOnIdExpression.
Teach template argument deduction that an overloaded id-expression
doesn't give a valid type for deduction purposes to a non-static
member function unless the expression has the correct syntactic
form.
Teach ActOnIdExpression that it shouldn't try to create implicit
member expressions for '&function', because this isn't a
permitted form of use for member functions.
Teach CheckAddressOfOperand to diagnose these more carefully.
Some of these cases aren't reachable right now because earlier
diagnostics interrupt them.
llvm-svn: 112258
When including a PCH and later re-emitting to another PCH, the name lookup tables of DeclContexts
may be incomplete, since we now lazily deserialize the visible decls of a particular name.
Fix the issue by iterating over the un-deserialized visible decls and completing the lookup tables
of DeclContexts before writing them out.
llvm-svn: 111698
*Huge* improvement over the amount of deserializing that we do for C++ lookup.
e.g, if he have the Carbon header precompiled and include it on a file containing this:
int x;
these are the before/after stats:
BEFORE:
*** AST File Statistics:
578 stat cache hits
4 stat cache misses
548/30654 source location entries read (1.787695%)
15907/16501 types read (96.400223%)
53525/59955 declarations read (89.275291%)
33993/43525 identifiers read (78.099945%)
41516/51891 statements read (80.006165%)
77/5317 macros read (1.448185%)
0/6335 lexical declcontexts read (0.000000%)
1/5424 visible declcontexts read (0.018437%)
AFTER using the on-disk table:
*** AST File Statistics:
578 stat cache hits
4 stat cache misses
548/30654 source location entries read (1.787695%)
10/16501 types read (0.060602%)
9/59955 declarations read (0.015011%)
161/43525 identifiers read (0.369902%)
20/51891 statements read (0.038542%)
6/5317 macros read (0.112846%)
0/6335 lexical declcontexts read (0.000000%)
2/5424 visible declcontexts read (0.036873%)
There's only one issue affecting mostly the precompiled preambles which I will address soon.
llvm-svn: 111636
for incomplete enum types. An incomplete enum can't really be treated as
an "integral or enumeration" type, and the incorrect treatment leads to
bad behavior for many callers.
This makes isIntegralOrEnumerationType equivalent to isIntegerType; I think
we should globally replace the latter with the former; thoughts?
llvm-svn: 111512
active C++ ABI as a raw string, we store it as an enum. This should improve
performance somewhat.
And yes, this time, I started from a clean build directory, and
all the tests passed. :)
llvm-svn: 111507
All it does right now is add space for two vtable pointers instead of one
when a class has both virtual methods and virtual bases. This is a requirement
of the Microsoft ABI, since it has separate vtables for methods and bases. Other
stuff will come up over time, but we'll cross those bridges when we get to
them.
llvm-svn: 111493
Now all classes derived from Attr are generated from TableGen.
Additionally, Attr* is no longer its own linked list; SmallVectors or
Attr* are used. The accompanying LLVM commit contains the updates to
TableGen necessary for this.
Some other notes about newly-generated attribute classes:
- The constructor arguments are a SourceLocation and a Context&,
followed by the attributes arguments in the order that they were
defined in Attr.td
- Every argument in Attr.td has an appropriate accessor named getFoo,
and there are sometimes a few extra ones (such as to get the length
of a variadic argument).
Additionally, specific_attr_iterator has been introduced, which will
iterate over an AttrVec, but only over attributes of a certain type. It
can be accessed through either Decl::specific_attr_begin/end or
the global functions of the same name.
llvm-svn: 111455
than GCC 4.2 here when building 32-bit (where GCC will allow
allocation of an array for which we can't get a valid past-the-end
pointer), and emulate its odd behavior in 64-bit where it only allows
63 bits worth of storage in the array. The former is a correctness
issue; the latter is harmless in practice (you wouldn't be able to use
such an array anyway) and helps us pass a GCC DejaGNU test.
Fixes <rdar://problem/8212293>.
llvm-svn: 111338
Unused warnings for functions:
-static functions
-functions in anonymous namespace
-class methods in anonymous namespace
-class method specializations in anonymous namespace
-function specializations in anonymous namespace
Unused warnings for variables:
-static variables
-variables in anonymous namespace
-static data members in anonymous namespace
-static data members specializations in anonymous namespace
Reveals lots of opportunities for dead code removal in llvm codebase that will
interest my esteemed colleagues.
llvm-svn: 111086