Summary:
Add a flag to the FunctionToLoopAdaptor that allows enabling MemorySSA only for the loop pass managers that are known to preserve it.
If an LPM is known to have only loop transforms that *all* preserve MemorySSA, then use MemorySSA if `EnableMSSALoopDependency` is set.
If an LPM has loop passes that do not preserve MemorySSA, then the flag passed is `false`, regardless of the value of `EnableMSSALoopDependency`.
When using a custom loop pass pipeline via `passes=...`, use keyword `loop` vs `loop-mssa` to use MemorySSA in that LPM. If a loop that does not preserve MemorySSA is added while using the `loop-mssa` keyword, that's an error.
Add the new `loop-mssa` keyword to a few tests where a difference occurs when enabling MemorySSA.
Reviewers: chandlerc
Subscribers: mehdi_amini, Prazek, george.burgess.iv, sanjoy.google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66376
llvm-svn: 369548
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
Summary:
Step 2 in using MemorySSA in LICM:
Use MemorySSA in LICM to do sinking and hoisting, all under "EnableMSSALoopDependency" flag.
Promotion is disabled.
Enable flag in LICM sink/hoist tests to test correctness of this change. Moved one test which
relied on promotion, in order to test all sinking tests.
Reviewers: sanjoy, davide, gberry, george.burgess.iv
Subscribers: llvm-commits, Prazek
Differential Revision: https://reviews.llvm.org/D40375
llvm-svn: 350879
In some cases the order that we hoist instructions in means that when rehoisting
(which uses the same order as hoisting) we can rehoist to a block A, then a
block B, then block A again. This currently causes an assertion failure as it
expects that when changing the hoist point it only ever moves to a block that
dominates the hoist point being moved from.
Fix this by moving the re-hoist point when it doesn't dominate the dominator of
hoisted instruction, or in other words when it wouldn't dominate the uses of
the instruction being rehoisted.
Differential Revision: https://reviews.llvm.org/D55266
llvm-svn: 350408
This commit caused a large compile-time slowdown in some cases when NDEBUG is
off due to the dominator tree verification it added. Fix this by only doing
dominator tree and loop info verification when something has been hoisted.
Differential Revision: https://reviews.llvm.org/D52827
llvm-svn: 347889
This reverts commits r347776 and r347778.
The first one, r347776, caused significant compile time regressions
for certain input files, see PR39836 for details.
llvm-svn: 347867
This commit caused failures because it failed to correctly handle cases where
we hoist a phi, then hoist a use of that phi, then have to rehoist that use. We
need to make sure that we rehoist the use to _after_ the hoisted phi, which we
do by always rehoisting to the immediate dominator instead of just rehoisting
everything to the original preheader.
An option is also added to control whether control flow is hoisted, which is
off in this commit but will be turned on in a subsequent commit.
Differential Revision: https://reviews.llvm.org/D52827
llvm-svn: 347776
The general approach taken is to make note of loop invariant branches, then when
we see something conditional on that branch, such as a phi, we create a copy of
the branch and (empty versions of) its successors and hoist using that.
This has no impact by itself that I've been able to see, as LICM typically
doesn't see such phis as they will have been converted into selects by the time
LICM is run, but once we start doing phi-to-select conversion later it will be
important.
Differential Revision: https://reviews.llvm.org/D52827
llvm-svn: 347190