The test is skipped/xfailing on all platforms, so it seems that the API
got out of sync. Fix that so it returns to a 'proper' failure
on FreeBSD.
Differential Revision: https://reviews.llvm.org/D92746
Copy the Linux implementation of GetLoadedModuleFileSpec()
and GetFileLoadAddress() into NativeProcessFreeBSD. This does not seem
to change anything at the moment but reducing the differences between
the plugins should help us in the long term.
Differential Revision: https://reviews.llvm.org/D92314
Explicitly consider the libraries reported on the initial eTakeSnapshot
action added, through adding them to the added soentry list
in DYLDRendezvous::SaveSOEntriesFromRemote(). This is necessary
on FreeBSD since the dynamic loader issues only a single 'consistent'
state rendezvous breakpoint hit for all the libraries present
in DT_NEEDED (while Linux issues an added-consistent event pair).
Reenable memory maps on FreeBSD since this fixed the issue triggered
by them.
Differential Revision: https://reviews.llvm.org/D92187
Force gdb-remote plugin when attaching using the derivatives
of PlatformPOSIX class. This is consistent with the behavior
for launching processes (via DebugProcess() method) and guarantees
consistent plugin choice on FreeBSD.
Differential Revision: https://reviews.llvm.org/D92667
Support SX Aurora VE by __clear_cache() function. This modification
allows VE to run written data, e.g. clear_cache_test.c under compiler-rt
test. We still have code alignment problem in enable_execute_stack_test.c,
though.
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D92703
Now that the class does not use a thread, the name is no longer
appropriate. Rename the class to "Server" and make it a long-lived
object (instead of recreating it for every expect_gdbremote_sequence
call). The idea is to make this class a wrapper for all communication
with debug/lldb-server. This will enable some additional cleanups as we
had some duplication between socket_pump non-pump code paths.
Also squeeze in some small improvements:
- use python-level timeouts on sockets instead of the manual select
calls
- use byte arrays instead of strings when working with raw packets
Add tests for this particular detail for x86 and arm (similar tests
already existed for x86_64 and aarch64).
The libssp implementation may be located in a separate DLL, and in
those cases, the references need to be in a .refptr stub, to avoid
needing to touch up code in the text section at runtime (which is
supported but inefficient for x86, and unsupported for arm).
Differential Revision: https://reviews.llvm.org/D92738
Summary: This patch added support for the intrinsics llvm.ppc.dcbfps and llvm.ppc.dcbstps.
dcbfps and dcbstps are actually extended mnemonics of dcbf.
dcbfps RA,RB ---> dcbf RA,RB,4
dcbstps RA,RB ---> dcbf RA,RB,6
Reviewed By: amyk, steven.zhang
Differential Revision: https://reviews.llvm.org/D91323
Some Ops in OMP dialect have regions associated with them i.e
`ParallelOp` `MasterOp`. Lowering of these regions involves interfacing
with `OMPIRBuilder` using callbacks, yet there still exist opportunities
for sharing common code in between.
This patch factors out common code into a separate function and adds
support for lowering `MasterOp` using that. Lowering of `ParallelOp` is
also modified appropriately.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D87247
Notes about some declarations:
* clang::Sema::endsWithnarrowing: deleted by rC148381
* clang::Sema::ConvertIntegerToTypeWarnOnOverflow: deleted by rC214678
* clang::Sema::FreePackedContext: deleted by rC268085
* clang::Sema::ComputeDefaulted*: deleted by rC296067
This introduce basic tablegen infra such as CSKY{InstrFormats,InstrInfo,RegisterInfo,}.td.
For now, only add instruction definitions for basic CSKY ISA operations, and the instruction format and register info are almost complete.
Our initial target is a working MC layer rather than codegen, so appropriate SelectionDAG patterns will come later.
Differential Revision: https://reviews.llvm.org/D89180
A simple SELECT is used for converting i1 to floating types on ppc32,
but in constrained cases, the chain is not handled properly. This patch
will fix that.
Reviewed By: steven.zhang
Differential Revision: https://reviews.llvm.org/D92365
In previous code, when refineIndexType(...) is called and Index is undef, Index.getOperand(0) will raise a assertion fail.
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D92548
Notes:
* llvm::createAsmStreamer: it has been moved to TargetRegistry.h
* (anon ns)::WasmObjectWriter::updateCustomSectionRelocations: remnant of D46335
* COFFAsmParser::ParseSEHRegisterNumber: remnant of D66625
* llvm::CodeViewContext::isValidCVFileNumber: accidentally added by r279847
The CountPrev variable was only used to forward a value from
the if statement to the conditional operator under the same
condition.
While there move some variable declarations to their first
assignment.
The file was added in 2007 but the functions have never been implemented.
Having the file can only cause confusion to existing C API (llvm-c/lto.h) users.
Notes about a few declarations:
* LiveVariables::RegisterDefIsDead: deleted by r47927
* createForwardControlFlowIntegrityPass, createJumpInstrTablesPass: deleted by r230780
* RegScavenger::setLiveInsUsed: deleted by r292543
* ScheduleDAGInstrs::{toggleKillFlag,startBlockForKills}: deleted by r304055
* Localizer::shouldLocalize: remnant of D75207
* DwarfDebug::addSectionLabel: deleted by r373273
For some inputs, the constraint system can grow quite large during
solving, because it replaces complex constraints with one or more
simpler constraints. This adds a cut-off to avoid compile-time explosion
on problematic inputs.
This change adds the context-senstive sample PGO infracture described in CSSPGO RFC (https://groups.google.com/g/llvm-dev/c/1p1rdYbL93s). It introduced an abstraction between input profile and profile loader that queries input profile for functions. Specifically, there's now the notion of base profile and context profile, and they are managed by the new SampleContextTracker for adjusting and merging profiles based on inline decisions. It works with top-down profiled guided inliner in profile loader (https://reviews.llvm.org/D70655) for better inlining with specialization and better post-inline profile fidelity. In the future, we can also expose this infrastructure to CGSCC inliner in order for it to take advantage of context-sensitive profile. This change is the consumption part of context-sensitive profile (The generation part is in this stack: https://reviews.llvm.org/D89707). We've seen good results internally in conjunction with Pseudo-probe (https://reviews.llvm.org/D86193). Pacthes for integration with Pseudo-probe coming up soon.
Currently the new infrastructure kick in when input profile contains the new context-sensitive profile; otherwise it's no-op and does not affect existing AutoFDO.
**Interface**
There're two sets of interfaces for query and tracking respectively exposed from SampleContextTracker. For query, now instead of simply getting a profile from input for a function, we can explicitly query base profile or context profile for given call path of a function. For tracking, there're separate APIs for marking context profile as inlined, or promoting and merging not inlined context profile.
- Query base profile (`getBaseSamplesFor`)
Base profile is the merged synthetic profile for function's CFG profile from any outstanding (not inlined) context. We can query base profile by function.
- Query context profile (`getContextSamplesFor`)
Context profile is a function's CFG profile for a given calling context. We can query context profile by context string.
- Track inlined context profile (`markContextSamplesInlined`)
When a function is inlined for given calling context, we need to mark the context profile for that context as inlined. This is to make sure we don't include inlined context profile when synthesizing base profile for that inlined function.
- Track not-inlined context profile (`promoteMergeContextSamplesTree`)
When a function is not inlined for given calling context, we need to promote the context profile tree so the not inlined context becomes top-level context. This preserve the sub-context under that function so later inline decision for that not inlined function will still have context profile for its call tree. Note that profile will be merged if needed when promoting a context profile tree if any of the node already exists at its promoted destination.
**Implementation**
Implementation-wise, `SampleContext` is created as abstraction for context. Currently it's a string for call path, and we can later optimize it to something more efficient, e.g. context id. Each `SampleContext` also has a `ContextState` indicating whether it's raw context profile from input, whether it's inlined or merged, whether it's synthetic profile created by compiler. Each `FunctionSamples` now has a `SampleContext` that tells whether it's base profile or context profile, and for context profile what is the context and state.
On top of the above context representation, a custom trie tree is implemented to track and manager context profiles. Specifically, `SampleContextTracker` is implemented that encapsulates a trie tree with `ContextTireNode` as node. Each node of the trie tree represents a frame in calling context, thus the path from root to a node represents a valid calling context. We also track `FunctionSamples` for each node, so this trie tree can serve efficient query for context profile. Accordingly, context profile tree promotion now becomes moving a subtree to be under the root of entire tree, and merge nodes for subtree if this move encounters existing nodes.
**Integration**
`SampleContextTracker` is now also integrated with AutoFDO, `SampleProfileReader` and `SampleProfileLoader`. When we detected input profile contains context-sensitive profile, `SampleContextTracker` will be used to track profiles, and all profile query will go to `SampleContextTracker` instead of `SampleProfileReader` automatically. Tracking APIs are called automatically for each inline decision from `SampleProfileLoader`.
Differential Revision: https://reviews.llvm.org/D90125
r302591 dropped -fsanitize-address-globals-dead-stripping for ELF platforms
(to work around a gold<2.27 bug: https://sourceware.org/bugzilla/show_bug.cgi?id=19002)
Upgrade REQUIRES: from lto (COMPILER_RT_TEST_USE_LLD (set by Android, but rarely used elsewhere)) to lto-available.
If COMPILER_RT_TEST_USE_LLD is not set, config.use_lld will be False.
However, if feature 'binutils_lto' is available, lto_supported can still be True,
but config.target_cflags will not get -fuse-ld=lld from config.lto_flags
As a result, we may use clang -flto with system 'ld' which may not support the bitcode file, e.g.
ld: error: /tmp/lto-constmerge-odr-44a1ee.o: Unknown attribute kind (70) (Producer: 'LLVM12.0.0git' Reader: 'LLVM 12.0.0git')
// The system ld+LLVMgold.so do not support ATTR_KIND_MUSTPROGRESS (70).
Just require lld-available and add -fuse-ld=lld.
Move fold of (sext (not i1 x)) -> (add (zext i1 x), -1) from X86 to DAGCombiner to improve codegen on other targets.
Differential Revision: https://reviews.llvm.org/D91589
Noticed while looking at D92701 - we only really handle TCK_RecipThroughput gather/scatter costs - for now drop back to the default implementation for non-legal gathers/scatters.
BasicAA has some special bit of logic for "same base pointer" GEPs
that performs a structural comparison: It only looks at two GEPs
with the same base (as opposed to two GEP chains with a MustAlias
base) and compares their indexes in a limited way. I generalized
part of this code in D91027, and this patch merges the remainder
into the normal decomposed GEP logic.
What this code ultimately wants to do is to determine that
gep %base, %idx1 and gep %base, %idx2 don't alias if %idx1 != %idx2,
and the access size fits within the stride.
We can express this in terms of a decomposed GEP expression with
two indexes scale*%idx1 + -scale*%idx2 where %idx1 != %idx2, and
some appropriate checks for sizes and offsets.
This makes the reasoning slightly more powerful, and more
importantly brings all the GEP logic under a common umbrella.
Differential Revision: https://reviews.llvm.org/D92723
This fixes the bug referenced by 5582a79876
which was exposed by 961f31d8ad.
With this change, `movq src@GOTPCREL, %rcx` => `movq src@GOTPCREL(%rip), %rcx`