We already do this for 16/32/64 as well as 8-bit add with register/immediate. Might as well do it for 8-bit INC/DEC too.
Differential Revision: https://reviews.llvm.org/D58869
llvm-svn: 355424
We already support 8-bits adds in convertToThreeAddress. But we can also support 8-bit OR if the bits are disjoint. We already do this for 16/32/64.
Differential Revision: https://reviews.llvm.org/D58863
llvm-svn: 355423
When lowering a select_cc node where the true and false values are of type f16,
we can't use a general conditional move because the FP16 instructions do not
support conditional execution. Instead, we must ensure that the condition code
is one of the four supported by the VSEL instruction.
Differential revision: https://reviews.llvm.org/D58813
llvm-svn: 355385
Summary:
In some cases the KILL was causing a hazard to be introduced as these were
scheduled into hazard slots, but don't result in an instruction.
KILL shouldn't be considered for hazard recognition.
Change-Id: Ib6d2a2160f8c94cd0ce611ab198c7e4f46aeffcf
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, tpr, t-tye, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58898
llvm-svn: 355384
If There is no types/non-empty strings, do not generate
.BTF section. If there is no func_info/line_info, do
not generate .BTF.ext section.
Signed-off-by: Yonghong Song <yhs@fb.com>
Differential Revision: https://reviews.llvm.org/D58936
llvm-svn: 355360
This adds instruction selection support for G_EXTRACT_VECTOR_ELT for cases
where the index is defined by a G_CONSTANT.
It also factos out the lane copy opcode selection part into its own function,
`getLaneCopyOpcode`. This is used by both `selectUnmergeValues` and
`selectExtractElt`.
Differential Revision: https://reviews.llvm.org/D58469
llvm-svn: 355344
The code to materialize a mask from a constant pool load tried to use a 128 bit
LDR to load a 64 bit constant pool entry, which was 8 byte aligned. This resulted
in a link failure in the NEON tests in the test suite since the LDR address was
unaligned. This change fixes that to instead emit a 64 bit LDR if the entry is
64 bit, before converting back to a 128 bit register for the TBL.
llvm-svn: 355326
This patch enables combining integer bitcasts of integer build vectors when the new scalar type is legal. I've avoided floating point because the implementation bitcasts float to int along the way and we would need to check the intermediate types for legality
Differential Revision: https://reviews.llvm.org/D58884
llvm-svn: 355324
X86TargetLowering::EmitLoweredSelect presently detects sequences of CMOV pseudo
instructions without accounting for debug intrinsics. This leads to different
codegen with and without option -g, if a DBG_VALUE instruction lands in the
middle of several lowered selects.
Work around this by skipping over debug instructions when looking for CMOV
sequences, and sinking those debug insts into the EmitLoweredSelect sunk block.
This might slightly shift where variables appear in the instruction sequence,
but won't re-order assignments.
Differential Revision: https://reviews.llvm.org/D58672
llvm-svn: 355307
The isScaledConstantInRange function takes upper and lower bounds which are
checked after dividing by the scale, so the bounds checks for half, single and
double precision should all be the same. Previously, we had wrong bounds checks
for half precision, so selected an immediate the instructions can't actually
represent.
Differential revision: https://reviews.llvm.org/D58822
llvm-svn: 355305
Summary:
Before when we implemented the first EH proposal, 'catch <tag>'
instruction may not catch an exception so there were multiple EH pads an
exception can unwind to. That means a BB could have multiple EH pad
successors.
Now after we switched to the new proposal, every 'catch' instruction
catches an exception, and there is only one catchpad per catchswitch, so
we at most have one EH pad successor, making `ThrowUnwindDest` map in
`WasmEHInfo` unnecessary.
Keeping `ThrowUnwindDest` map in `WasmEHInfo` has its own problems,
because other optimization passes can split a BB that contains possibly
throwing calls (previously invokes), and we have to update the map every
time that happens, which is not easy for common CodeGen passes.
This also correctly updates successor info in LateEHPrepare when we add
a rethrow instruction.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58486
llvm-svn: 355296
We were using VPBLENDW for v2i64 and VBLENDPD for v4i64. VPBLENDD has better throughput than VPBLENDW on some CPUs so it makes sense to use it when possible. VBLENDPD will probably become VBLENDD during execution domain fixing, but we might as well use integer in isel while we can.
This should work around some issues with the domain fixing pass prefering PBLENDW when we start with PBLENDW. There may still be some v8i16 cases that could use PBLENDD.
llvm-svn: 355281
Summary:
This prevents crashes in instruction selection when these operations
are used. The tests check that the scalar version of the instruction
is used where applicable, although some expansions do not use the
scalar version.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58859
llvm-svn: 355261
Summary:
This extends the variety of pattern that can generate a SHLD instead of using two shifts.
This fixes a regression that would be introduced by D57367 or D33587
Reviewers: RKSimon, craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D57389
llvm-svn: 355260
The new addressing mode added for the v8.2A FP16 instructions uses bit 8 of the
immediate to encode the sign of the offset, like the other FP loads/stores, so
need to be treated the same way.
Differential revision: https://reviews.llvm.org/D58816
llvm-svn: 355201
This function was not checking for the condition code variants which are
undefined if either input is NaN, so we were missing selection of the VSEL
instruction in some cases when using -fno-honor-nans or -ffast-math.
Differential revision: https://reviews.llvm.org/D58812
llvm-svn: 355199
There was a time when we couldn't dump target-specific flags such as
arm-sbrel etc, so the tests didn't check for them. We can now be more
specific in our tests.
llvm-svn: 355189
These were not recognized as potential atomics by memory legalizer.
The test was working not because legalizer did a right thing, but
because it has skipped all these instructions. When I have fixed
DS desciption test started to fail because region address has
changed from 4 to 2 a while ago.
Differential Revision: https://reviews.llvm.org/D58802
llvm-svn: 355179
Unsigned mul high for MIPS32 is selected into two PseudoInstructions:
PseudoMULTu and PseudoMFHI that use accumulator register class ACC64 for
some of its operands. Registers in this class have appropriate hi and lo
register as subregisters: $lo0 and $hi0 are subregisters of $ac0 etc.
mul instruction implicit-defs $lo0 and $hi0 according to MipsInstrInfo.td.
In functions where mul and PseudoMULTu are present fastRegisterAllocator
will "run out of registers during register allocation" because
'calcSpillCost' for $ac0 will return spillImpossible because subregisters
$lo0 and $hi0 of $ac0 are reserved by mul instruction above. A solution is
to mark implicit-defs of $lo0 and $hi0 as dead in mul instruction.
Differential Revision: https://reviews.llvm.org/D58715
llvm-svn: 355178
In certain cases, the first non-frame-setup instruction in a function is
a branch. For example, it could be a cbz on an argument. Make sure we
correctly allocate the UnwindHelp, and find an appropriate register to
use to initialize it.
Fixes https://bugs.llvm.org/show_bug.cgi?id=40184
Differential Revision: https://reviews.llvm.org/D58752
llvm-svn: 355136
This is another step towards ensuring that we produce the optimal code for reductions,
but there are other potential benefits as seen in the tests diffs:
1. Memory loads may get scalarized resulting in more efficient code.
2. Memory stores may get scalarized resulting in more efficient code.
3. Complex ops like fdiv/sqrt get scalarized which may be faster instructions depending on uarch.
4. Even simple ops like addss/subss/mulss/roundss may result in faster operation/less frequency throttling when scalarized depending on uarch.
The TODO comment suggests 1 or more follow-ups for opcodes that can currently result in regressions.
Differential Revision: https://reviews.llvm.org/D58282
llvm-svn: 355130
Support sub-register code-gen for XADD is like supporting any other Load
and Store patterns.
No new instruction is introduced.
lock *(u32 *)(r1 + 0) += w2
has exactly the same underlying insn as:
lock *(u32 *)(r1 + 0) += r2
BPF_W width modifier has guaranteed they behave the same at runtime. This
patch merely teaches BPF back-end that BPF_W width modifier could work
GPR32 register class and that's all needed for sub-register code-gen
support for XADD.
test/CodeGen/BPF/xadd.ll updated to include sub-register code-gen tests.
A new testcase test/CodeGen/BPF/xadd_legal.ll is added to make sure the
legal case could pass on all code-gen modes. It could also test dead Def
check on GPR32. If there is no proper handling like what has been done
inside BPFMIChecking.cpp:hasLivingDefs, then this testcase will fail.
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
llvm-svn: 355126