This has the dual effect of (1) enabling more dead-stripping in release builds
and (2) ensuring that debug helper functions aren't stripped away in debug
builds, as they're intended to be called from the debugger.
Note that the attribute is applied to definitions rather than declarations in
headers going forward because it's now conditional on NDEBUG:
/// \brief Mark debug helper function definitions like dump() that should not be
/// stripped from debug builds.
Requires corresponding macro added in LLVM r198456.
llvm-svn: 198489
This ensures that variables accessible through a union are invalidated when
the union value is passed to a function. We still don't fully handle union
values, but this should at least quiet some false positives.
PR16596
llvm-svn: 193265
With this patch things like preserving contents of regions (either hi- or low-level ones) or processing of the only top-level region can be implemented easily without passing around extra parameters.
This patch is a first step towards adequate modeling of memcpy() by the CStringChecker checker and towards eliminating of majority of false-positives produced by the NewDeleteLeaks checker.
llvm-svn: 191342
RegionStore tries to protect against accidentally initializing the same
region twice, but it doesn't take subregions into account very well. If
the outer region being initialized is a struct with an empty base class,
the offset of the first field in the struct will be 0. When we initialize
the base class, we may invalidate the contents of the struct by providing
a default value of Unknown (or some new symbol). We then go to initialize
the member with a zeroing constructor, only to find that the region at
that offset in the struct already has a value. The best we can do here is
to invalidate that value and continue; neither the old default value nor
the new 0 is correct for the entire struct after the member constructor call.
The correct solution for this is to track region extents in the store.
<rdar://problem/14914316>
llvm-svn: 190530
This will never happen in the analyzed code code, but can happen for checkers
that over-eagerly dereference pointers without checking that it's safe.
UnknownVal is a harmless enough value to get back.
Fixes an issue added in r189590, caught by our internal buildbot.
llvm-svn: 189688
Summary:
RegionStoreManager had an optimization which replaces references to empty
structs with UnknownVal. Unfortunately, this check didn't take into account
possible field members in base classes.
To address this, I changed this test to "is empty and has no base classes". I
don't consider it worth the trouble to go through base classes and check if all
of them are empty.
Reviewers: jordan_rose
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1547
llvm-svn: 189590
Previously, SValBuilder knew how to evaluate StringLiterals, but couldn't
handle an array-to-pointer decay for constant values. Additionally,
RegionStore was being too strict about loading from an array, refusing to
return a 'char' value from a 'const char' array. Both of these have been
fixed.
llvm-svn: 186520
This gives slightly better precision, specifically, in cases where a non-typed region represents the array
or when the type is a non-array type, which can happen when an array is a result of a reinterpret_cast.
llvm-svn: 182810
It’s important for us to reason about the cast as it is used in std::addressof. The reason we did not
handle the cast previously was a crash on a test case (see commit r157478). The crash was in
processing array to pointer decay when the region type was not an array. Address the issue, by
just returning an unknown in that case.
llvm-svn: 182808
The one user has been changed to use getLValue on the compound literal
expression and then use the normal bindLoc to assign a value. No need
to special case this in the StoreManager.
llvm-svn: 181214
Previously, this was scattered across Environment (literal expressions),
ExprEngine (default arguments), and RegionStore (global constants). The
former special-cased several kinds of simple constant expressions, while
the latter two deferred to the AST's constant evaluator.
Now, these are all unified as SValBuilder::getConstantVal(). To keep
Environment fast, the special cases for simple constant expressions have
been left in, but the main benefits are that (a) unusual constants like
ObjCStringLiterals now work as default arguments and global constant
initializers, and (b) we're not duplicating code between ExprEngine and
RegionStore.
This actually caught a bug in our test suite, which is awesome: we stop
tracking allocated memory if it's passed as an argument along with some
kind of callback, but not if the callback is 0. We were testing this in
a case where the callback parameter had a default value, but that value
was 0. After this change, the analyzer now (correctly) flags that as a
leak!
<rdar://problem/13773117>
llvm-svn: 180894
The analyzer uses LazyCompoundVals to represent rvalues of aggregate types,
most importantly structs and arrays. This allows us to efficiently copy
around an entire struct, rather than doing a memberwise load every time a
struct rvalue is encountered. This can also keep memory usage down by
allowing several structs to "share" the same snapshotted bindings.
However, /lookup/ through LazyCompoundVals can be expensive, especially
since they can end up chaining back to the original value. While we try
to reuse LazyCompoundVals whenever it's safe, and cache information about
this transitivity, the fact is it's sometimes just not a good idea to
perpetuate LazyCompoundVals -- the tradeoffs just aren't worth it.
This commit changes RegionStore so that binding a LazyCompoundVal to struct
will do a memberwise copy if the struct is simple enough. Today's definition
of "simple enough" is "up to N scalar members" (see below), but that could
easily be changed in the future. This is enough to bring the test case in
PR15697 back down to a manageable analysis time (within 20% of its original
time, in an unfair test where the new analyzer is not compiled with LTO).
The actual value of "N" is controlled by a new -analyzer-config option,
'region-store-small-struct-limit'. It defaults to "2", meaning structs with
zero, one, or two scalar members will be considered "simple enough" for
this code path.
It's worth noting that a more straightforward implementation would do this
on load, not on bind, and make use of the structure we already have for this:
CompoundVal. A long time ago, this was actually how RegionStore modeled
aggregate-to-aggregate copies, but today it's only used for compound literals.
Unfortunately, it seems that we've special-cased LazyCompoundVal in certain
places (such as liveness checks) but failed to similarly special-case
CompoundVal in all of them. Until we're confident that CompoundVal is
handled properly everywhere, this solution is safer, since the entire
optimization is just an implementation detail of RegionStore.
<rdar://problem/13599304>
llvm-svn: 179767
Structs and arrays can take advantage of the single top-level global
symbol optimization (described in the previous commit) just as well
as scalars.
No intended behavioral change.
llvm-svn: 179555
Now that we're invalidating global regions properly, we want to continue
taking advantage of a particular optimization: if all global regions are
invalidated together, we can represent the bindings of each region with
a "derived region value" symbol. Essentially, this lazily links each
global region with a single symbol created at invalidation time, rather
than binding each region with a new symbolic value.
We used to do this, but haven't been for a while; the previous commit
re-enabled this code path, and this handles the fallout.
<rdar://problem/13464044>
llvm-svn: 179554
This fixes a regression where a call to a function we can't reason about
would not actually invalidate global regions that had explicit bindings.
void test_that_now_works() {
globalInt = 42;
clang_analyzer_eval(globalInt == 42); // expected-warning{{TRUE}}
invalidateGlobals();
clang_analyzer_eval(globalInt == 42); // expected-warning{{UNKNOWN}}
}
This has probably been around since the initial "cluster" refactoring of
RegionStore, if not longer.
<rdar://problem/13464044>
llvm-svn: 179553
Previously, the analyzer used isIntegerType() everywhere, which uses the C
definition of "integer". The C++ predicate with the same behavior is
isIntegerOrUnscopedEnumerationType().
However, the analyzer is /really/ using this to ask if it's some sort of
"integrally representable" type, i.e. it should include C++11 scoped
enumerations as well. hasIntegerRepresentation() sounds like the right
predicate, but that includes vectors, which the analyzer represents by its
elements.
This commit audits all uses of isIntegerType() and replaces them with the
general isIntegerOrEnumerationType(), except in some specific cases where
it makes sense to exclude scoped enumerations, or any enumerations. These
cases now use isIntegerOrUnscopedEnumerationType() and getAs<BuiltinType>()
plus BuiltinType::isInteger().
isIntegerType() is hereby banned in the analyzer - lib/StaticAnalysis and
include/clang/StaticAnalysis. :-)
Fixes real assertion failures. PR15703 / <rdar://problem/12350701>
llvm-svn: 179081
Refactor invalidateRegions to take SVals instead of Regions as input and teach RegionStore
about processing LazyCompoundVal as a top-level “escaping” value.
This addresses several false positives that get triggered by the NewDelete checker, but the
underlying issue is reproducible with other checkers as well (for example, MallocChecker).
llvm-svn: 178518
Add a new callback that notifies checkers when a const pointer escapes. Currently, this only works
for const pointers passed as a top level parameter into a function. We need to differentiate the const
pointers escape from regular escape since the content pointed by const pointer will not change;
if it’s a file handle, a file cannot be closed; but delete is allowed on const pointers.
This should suppress several false positives reported by the NewDelete checker on llvm codebase.
llvm-svn: 178310
This addresses an undefined value false positive from concreteOffsetBindingIsInvalidatedBySymbolicOffsetAssignment.
Fixes PR14877; radar://12991168.
llvm-svn: 177905
This fixes some mistaken condition logic in RegionStore that caused
global variables to be invalidated when /any/ region was invalidated,
rather than only as part of opaque function calls. This was only
being used by CStringChecker, and so users will now see that strcpy()
and friends do not invalidate global variables.
Also, add a test case we don't handle properly: explicitly-assigned
global variables aren't being invalidated by opaque calls. This is
being tracked by <rdar://problem/13464044>.
llvm-svn: 177572
In this case, the value of 'x' may be changed after the call to indirectAccess:
struct Wrapper {
int *ptr;
};
void indirectAccess(const Wrapper &w);
void test() {
int x = 42;
Wrapper w = { x };
clang_analyzer_eval(x == 42); // TRUE
indirectAccess(w);
clang_analyzer_eval(x == 42); // UNKNOWN
}
This is important for modelling return-by-value objects in C++, to show
that the contents of the struct are escaping in the return copy-constructor.
<rdar://problem/13239826>
llvm-svn: 177570
This fixes a crash when analyzing LLVM that was exposed by r177220 (modeling of
trivial copy/move assignment operators).
When we look up a lazy binding for “Builder”, we see the direct binding of Loc at offset 0.
Previously, we believed the binding, which led to a crash. Now, we do not believe it as
the types do not match.
llvm-svn: 177453
Previously we were assuming that we'd never ask for the sub-region bindings
of a bitfield, since a bitfield cannot have subregions. However,
unification of code paths has made that assumption invalid. While we could
take advantage of this by just checking for the single possible binding,
it's probably better to do the right thing, so that if/when we someday
support unions we'll do the right thing there, too.
This fixes a handful of false positives in analyzing LLVM.
<rdar://problem/13325522>
llvm-svn: 176388
By returning the (key, value) binding pairs, we save lookups afterwards.
This also enables further work later on.
No functionality change.
llvm-svn: 176230
This is essentially the same problem as r174031: a lazy binding for the first
field of a struct may stomp on an existing default binding for the
entire struct. Because of the way RegionStore is set up, we can't help
but lose the top-level binding, but then we need to make sure that accessing
one of the other fields doesn't come back as Undefined.
In this case, RegionStore is now correctly detecting that the lazy binding
we have isn't the right type, but then failing to follow through on the
implications of that: we don't know anything about the other fields in the
aggregate. This fix adds a test when searching for other kinds of default
values to see if there's a lazy binding we rejected, and if so returns
a symbolic value instead of Undefined.
The long-term fix for this is probably a new Store model; see
<rdar://problem/12701038>.
Fixes <rdar://problem/13292559>.
llvm-svn: 176144
r175026 added support for default values, but didn't take reference
parameters into account, which expect the default argument to be an
lvalue. Use createTemporaryRegionIfNeeded if we can evaluate the default
expr as an rvalue but the expected result is an lvalue.
Fixes the most recent report of PR12915. The original report predates
default argument support, so that can't be it.
llvm-svn: 176042
- When deciding if we can reuse a lazy binding, make sure to check if there
are additional bindings in the sub-region.
- When reading from a lazy binding, don't accidentally strip off casts or
base object regions. This slows down lazy binding reading a bit but is
necessary for type sanity when treating one class as another.
A bit of minor refactoring allowed these two checks to be unified in a nice
early-return-using helper function.
<rdar://problem/13239840>
llvm-svn: 175703
RegionStoreManager::getInterestingValues() returns a pointer to a
std::vector that lives inside a DenseMap, which is constructed on demand.
However, constructing one such value can lead to constructing another
value, which will invalidate the reference created earlier.
Fixed by delaying the new entry creation until the function returns.
llvm-svn: 175582
If a base object is at a 0 offset, RegionStoreManager may find a lazy
binding for the entire object, then try to attach a FieldRegion or
grandparent CXXBaseObjectRegion on top of that (skipping the intermediate
region). We now preserve as many layers of base object regions necessary
to make the types match.
<rdar://problem/13239840>
llvm-svn: 175556