These files won't build for ios etc arm builds of lldb and aren't
used for macosx native lldb's.
http://reviews.llvm.org/D17750
<rdar://problem/24287153>
llvm-svn: 262566
the xcode project file to catch switch statements that have a
case that falls through unintentionally.
Define LLVM_FALLTHROUGH to indicate instances where a case has code
and intends to fall through. This should be in llvm/Support/Compiler.h;
Peter Collingbourne originally checked in there (r237766), then
reverted (r237941) because he didn't have time to mark up all the
'case' statements that were intended to fall through. I put together
a patch to get this back in llvm http://reviews.llvm.org/D17063 but
it hasn't been approved in the past week. I added a new
lldb-private-defines.h to hold the definition for now.
Every place in lldb where there is a comment that the fall-through
is intentional, I added LLVM_FALLTHROUGH to silence the warning.
I haven't tried to identify whether the fallthrough is a bug or
not in the other places.
I haven't tried to add this to the cmake option build flags.
This warning will only work for clang.
This build cleanly (with some new warnings) on macosx with clang
under xcodebuild, but if this causes problems for people on other
configurations, I'll back it out.
llvm-svn: 260930
On libc++ std::atomic is a fairly simple data type (layout wise, at least), wrapping actual contents in a member variable named "__a_"
All the formatters are doing is "peel away" this intermediate layer and exposing user data as direct children or values of the std::atomic root variable
Fixes rdar://24329405
llvm-svn: 260752
This change restores the Xcode build to working after Makefile support
was stripped from LLVM and clang recently.
With this change, the Xcode build now requires cmake (2.8.12.2+).
The cmake must either be on the path that Xcode sees, or it must
exist in one of the following locations:
* /usr/local/bin/cmake
* /opt/local/bin/cmake
* $HOME/bin/cmake
If the ninja build tool is present on the path, it will be used.
If not, ninja will be cloned (via git), bootstrap-built, and
used for the llvm/clang build.
LLDB now requires a minimum deployment target of OS X 10.9. Prior
to this, it was 10.8. The llvm/clang cmake build will not run
with Xcode 7.2 or Xcode 7.3 beta's compiler with the minimum
deployment target set to anything lower than 10.9. This is
related to #include <atomic>.
When llvm or clang source code does not exist in the lldb tree,
it will be cloned via git using http://llvm.org/git/{project}.git.
Previously it used SVN. If this causes any heartache, we can
make this smarter, autodetect an embedded svn and use svn instead.
(And/or use SVN if a git command is not available).
This change also fixes an lldb-mi linkage failure (needed
libncurses) as exposed by one of the LLVM libs.
llvm-svn: 259027
The python test run target started failing recently.
I tracked it down to what looks like the passing of
environment variables into the python script.
This locally fixes the vast majority of errors that
were ultimately inferior test build command failures.
Not sure what caused that to start happening.
llvm-svn: 258585
A few files were accidentally added to the Copy Files build phase for our man
page, and they would appear when 'xcodebuild install' was invoked. This removes
those files – they continue to be built correctly, but they aren't installed
with our man page.
llvm-svn: 258194
The Green Dragon LLVM builders are starting to parse xunit output
on LLDB Xcode builders. By default the XML formatter treats
xpass (unexpected successes) as failures. The new flag added
ensures we simply ignore those for purposes of xUnit output.
LLDB is not currently XPASS clean.
llvm-svn: 257717
Most of the time CONFIGURATION_BUILD_DIR and BUILT_PRODUCTS_DIR are the same,
but they are different in 'xcodebuild install' situations. The file needs to be
put into BUILT_PRODUCTS_DIR or lldb's Python interface doesn't work when lldb is
built using 'xcodebuild install'.
llvm-svn: 257653
Added a new flag, --allow-static-binding. When specified,
if (and only if) the swig binary cannot be found, then the
LLDBWrapPython.cpp and lldb.py from the
scripts/Python/{static-binding-dir} are copied into the place where
swig would have generated them.
{static-binding-dir} defaults to static-binding, and can be
overridden with the --static-binding-dir command line argument.
The static bindings checked in are from r253424.
llvm-svn: 253448
This is no longer needed with --find-swig, and although innocuous on systems with
swig in the path, it blows up when there is no swig in the path. This should
have been removed in the prior check-in.
llvm-svn: 253353
The green dragon OS X builder doesn't have swig on the path.
I need to enable behavior where we can look for it
in some well known spots.
llvm-svn: 253319
This is only used by Xcode at the moment. It replaces the
buildSwigWrapperClasses.py and related per-script-language
scripts. It also fixes a couple bugs in those w/r/t Xcode
usage:
* the presence of the GCC_PREPROCESSOR_DEFINITIONS env var
should not be short-circuiting generation of the language
binding; rather, only if LLDB_DISABLE_PYTHON is present
within that environment variable.
* some logic around what to do when building in "non-Makefile"
mode. I've switched the handling of that to be on a
"--framework" flag - if specified, we build an OS X-style
framework; otherwise, we go with non.
Putting this up now only attached to the Xcode build so
others can look at it but not be affected by it yet.
After this, I'll tackle the finalizer, along with trying
it locally on Linux.
llvm-svn: 253317
This allows for command-line debugging of iOS simulator binaries (as long as UI is not required, or a full UI simulator has previously been otherwise launched), as well as execution of the LLDB test suite on the iOS simulator
This is known to compile on OSX 10.11 GM - feedback from people on other platforms and/or older versions of OSX as to the buildability of this code is greatly appreciated
llvm-svn: 252112
The Go interpreter doesn't JIT or use LLVM, so this also
moves all the JIT related code from UserExpression to a new class LLVMUserExpression.
Differential Revision: http://reviews.llvm.org/D13073
Fix merge
llvm-svn: 251820
These are two simple tests that make sure single line and
multiline content are processed and received by Editline.cpp.
Fancier tests to come...
llvm-svn: 251681
Also added a placeholder Editline gtest for some code that I'll add as soon
as I make sure this addition doesn't break any of the build bots.
This change also introduces some Xcode user-defined variables that I've used
to attempt to isolate the way Python is integrated into the build. I don't have
the rest of LLDB using it yet, I'm using the gtests as my guinea pig on that.
Currently these are:
PYTHON_FRAMEWORK_PATH
PYTHON_VERSION_MAJOR
PYTHON_VERSION_MINOR
I will convert the rest over to it after this gets a little time to bake
and any kinks are worked out of it.
llvm-svn: 251261
I am also letting a debugserver-related project entry slide in
since Xcode seems to insist on inserting it, and when I remove it
the new files don't show up.
llvm-svn: 251243
make it easier to run hand-built lldb roots and retain those
entitlements. This is currently only used by Xcode; command
line lldb doesn't expose the SBLaunchInfo::SetUserID()
launch option.
<rdar://problem/23154486>
llvm-svn: 250981
The purpose of the class is to make it easy to execute tasks in parallel
Basic design goals:
* Have a very lightweight and easy to use interface where a list of
lambdas can be executed in parallel
* Use a global thread pool to limit the number of threads used
(std::async don't do it on Linux) and to eliminate the thread creation
overhead
* Destroy the thread currently not in use to avoid the confusion caused
by them during debugging LLDB
Possible future improvements:
* Possibility to cancel already added, but not yet started tasks
* Parallel for_each implementation
* Optimizations in the thread creation destroyation code
Differential revision: http://reviews.llvm.org/D13727
llvm-svn: 250820
A REPL takes over the command line and typically treats input as source code.
REPLs can also do code completion. The REPL class allows its subclasses to
implement the language-specific functionality without having to know about the
IOHandler-specific internals.
Also added a PluginManager-based way of getting to a REPL given a language and
a target.
Also brought in some utility code and expression options that are useful for
REPLs, such as line offsets for expressions, ANSI terminal coloring of errors,
and a few IOHandler convenience functions.
llvm-svn: 250753