and silence the backtrace printout
In the process, refactor the Execute* commands in ScriptInterpreter to take an options object, and add a new setting to not mask out errors so that the callers can handle them directly
instead of having the default behavior
llvm-svn: 167067
RegisterContextKDP_i386 was not correctly writing registers due to missing "virtual" keywords. Added the virtual keywords and made the functions pure virtual to ensure subclasses can't get away without implementing these functions.
llvm-svn: 167066
"~rc" via getpwnam() instead of doing tilde expansion and doing soft-link
dereferencing via realpath() - if we're pointing to a softlink, leave it
as-is.
<rdar://problem/12597698>
llvm-svn: 167052
The attached patch adds eValueTypeVector to lldb_private::Value. The nested struct Vector is patterned after RegisterValue::m_data.buffer. This change to Value allows ClangExpressionDeclMap::LookupDecl to return vector register data for consumption by InterpreterStackFrame::ResolveValue. Note that ResolveValue was tweaked slightly to allocate enough memory for vector registers.
An immediate result of this patch is that "expr $xmm0" generates the same results on Linux as on the Mac, which is good enough for TestRegisters.py. In addition, the log of m_memory.PrintData(data_region.m_base, data_region.m_extent) shows that the register content has been resolved successfully. On the other hand, the output is glaringly empty:
runCmd: expr $xmm0
output: (unsigned char __attribute__((ext_vector_type(16)))) $0 = {}
Expecting sub string: vector_type
Matched
llvm-svn: 167033
There should be no functional changes as SBData creation functions already checked for NULL regardless of size - but it ensures consistency
llvm-svn: 166978
This should delay initialization of Python until strictly necessary and speed-up debugger startup
Also, convert formatters for SEL and BOOL ObjC data-types from Python to C++, in order to reap more performance benefits from the above changes
llvm-svn: 166967
I tracked down a leak that could happen when detaching from a process where the lldb_private::Process objects would stay around forever. This was caused by a eStateDetached event that was queued up on the lldb_private::Process private state thread listener. Since process events contain shared pointers to the process, this is dangerous if they don't get consume or cleared as having the lldb_private::Process class contain a collection of things that have a shared pointer to yourself is obviously bad.
To fix this I modified the Process::Finalize() function to clear this list. The actual thing that was holding onto the ModuleSP and thus the static archive, was a stack frame. Since the process wasn't going away, it still had thread objects and they still had frames. I modified the Thread::Destroy() to clear the stack frames to ensure this further doesn't happen.
llvm-svn: 166964
so it could hold this information, and then used it to look up unfound names in the object pointer
if it exists. This gets "frame var" to work for unqualified references to ivars captured in blocks.
But the expression parser is ignoring this information still.
llvm-svn: 166860
Removing the IsDynamic() and GetStaticValue() calls, so that they will default to the base class behavior:
- non-dynamic
- itself as the static value
This is in contrast with the previous behavior which could be confusing and could potentially cause issues when using those objects
llvm-svn: 166857
- Only read the statically-defined isa table in the
shared cache once. Only the dynamically-constructed
isa table can change.
- Ignore the statically-defined isa table if its
version isn't what we expect.
llvm-svn: 166856
The subtle behavior is that the Predicate wait functions may not detect transitory changes in the predicate value. Consider the following scenario.
Thread A waits for a bit to be set in the predicate value.
Thread B sets the bit in the predicate value.
Before Thread A wakes up, Thread C clears the bit in the predicate value.
Thread A wakes, checks the value and goes back to waiting.
The mutex and condition variables protect access to the value, but they offer no guarantee that another thread will not acquire the mutex and change the value before a waiting thread is restarted after a change.
I believe that the current behavior is correct and reasonable. I just want to leave a marker to prevent possible problems in the future or to help anyone who might be unfortunate enough to encounter such a problem.
llvm-svn: 166800
Full UnwindPlan is trying to do an impossible unwind; in that case
invalidate the Full UnwindPlan and replace it with the architecture
default unwind plan.
This is a scenario that happens occasionally with arm unwinds in
particular; the instruction analysis based full unwindplan can
mis-parse the functions and the stack walk stops prematurely. Now
we can do a simpleminded frame-chain walk to find the caller frame
and continue the unwind. It's not ideal but given the complicated
nature of analyzing the arm functions, and the lack of eh_frame
information on iOS, it is a distinct improvement and fixes some
long-standing problems with the unwinder on that platform.
This is fixing <rdar://problem/12091421>. I may re-use this
invalidate feature in the future if I can identify other cases where
the full unwindplan's unwind information is clearly incorrect.
This checkin also includes some cleanup for the volatile register
definition in the arm ABI plugin for <rdar://problem/10652166>
although work remains to be done for that bug.
llvm-svn: 166757