- This magically enables using 'clang -cc1' as a replacement for most of 'llvm-as', 'llvm-dis', 'llc' and 'opt' functionality.
For example, 'llvm-as' is:
$ clang -cc1 -emit-llvm-bc FOO.ll -o FOO.bc
and 'llvm-dis' is:
$ clang -cc1 -emit-llvm FOO.bc -o -
and 'opt' is, e.g.:
$ clang -cc1 -emit-llvm -O3 -o FOO.opt.ll FOO.ll
and 'llc' is, e.g.:
$ clang -cc1 -S -o - FOO.ll
The nice thing about using the backend tools this way is that they are guaranteed to exactly match how the compiler generates code (for example, setting the same backend options).
llvm-svn: 105583
- These inputs follow an abbreviated execution path, but are still worth handling by FrontendAction so they reuse all the other clang -cc1 features.
llvm-svn: 105582
bring in the entire lookup table at once.
Also, give ExternalSemaSource's vtable a home. This is important because otherwise
any reference to it will cause RTTI to be emitted, and since clang is compiled
with -fno-rtti, that RTTI will contain unresolved references (to ExternalASTSource's
RTTI). So this change makes it possible to subclass ExternalSemaSource from projects
compiled with RTTI, as long as the subclass's home is compiled with -fno-rtti.
llvm-svn: 105268
The macros required for DeclNodes use have changed to match the use of
StmtNodes. The FooFirst enumerator constants have been named firstFoo
to match usage elsewhere.
llvm-svn: 105165
the x86-64 __va_list_tag with this attribute. The attribute causes the
affected type to behave like a fundamental type when considered by ADL.
(x86-64 is the only target we currently provide with a struct-based
__builtin_va_list)
Fixes PR6762.
llvm-svn: 104941
fatal error: too many errors emitted, stopping now [-ferror-limit=]
Tell the user that this is controlled with -ferror-limit=, like above.
llvm-svn: 104528
ObjCObjectType, which is basically just a pair of
one of {primitive-id, primitive-Class, user-defined @class}
with
a list of protocols.
An ObjCObjectPointerType is therefore just a pointer which always points to
one of these types (possibly sugared). ObjCInterfaceType is now just a kind
of ObjCObjectType which happens to not carry any protocols.
Alter a rather large number of use sites to use ObjCObjectType instead of
ObjCInterfaceType. Store an ObjCInterfaceType as a pointer on the decl rather
than hashing them in a FoldingSet. Remove some number of methods that are no
longer used, at least after this patch.
By simplifying ObjCObjectPointerType, we are now able to easily remove and apply
pointers to Objective-C types, which is crucial for a certain kind of ObjC++
metaprogramming common in WebKit.
llvm-svn: 103870
return value optimization. Sema marks return statements with their
NRVO candidates (which may or may not end up using the NRVO), then, at
the end of a function body, computes and marks those variables that
can be allocated into the return slot.
I've checked this locally with some debugging statements (not
committed), but there won't be any tests until CodeGen comes along.
llvm-svn: 103865
"return" statement and mark the corresponding CXXConstructExpr as
elidable. Teach CodeGen that eliding a temporary is different from
eliding an object construction.
This is just a baby step toward NRVO.
llvm-svn: 103849
"used" (e.g., we will refer to the vtable in the generated code) and
when they are defined (i.e., because we've seen the key function
definition). Previously, we were effectively tracking "potential
definitions" rather than uses, so we were a bit too eager about emitting
vtables for classes without key functions.
The new scheme:
- For every use of a vtable, Sema calls MarkVTableUsed() to indicate
the use. For example, this occurs when calling a virtual member
function of the class, defining a constructor of that class type,
dynamic_cast'ing from that type to a derived class, casting
to/through a virtual base class, etc.
- For every definition of a vtable, Sema calls MarkVTableUsed() to
indicate the definition. This happens at the end of the translation
unit for classes whose key function has been defined (so we can
delay computation of the key function; see PR6564), and will also
occur with explicit template instantiation definitions.
- For every vtable defined/used, we mark all of the virtual member
functions of that vtable as defined/used, unless we know that the key
function is in another translation unit. This instantiates virtual
member functions when needed.
- At the end of the translation unit, Sema tells CodeGen (via the
ASTConsumer) which vtables must be defined (CodeGen will define
them) and which may be used (for which CodeGen will define the
vtables lazily).
From a language perspective, both the old and the new schemes are
permissible: we're allowed to instantiate virtual member functions
whenever we want per the standard. However, all other C++ compilers
were more lazy than we were, and our eagerness was both a performance
issue (we instantiated too much) and a portability problem (we broke
Boost test cases, which now pass).
Notes:
(1) There's a ton of churn in the tests, because the order in which
vtables get emitted to IR has changed. I've tried to isolate some of
the larger tests from these issues.
(2) Some diagnostics related to
implicitly-instantiated/implicitly-defined virtual member functions
have moved to the point of first use/definition. It's better this
way.
(3) I could use a review of the places where we MarkVTableUsed, to
see if I missed any place where the language effectively requires a
vtable.
Fixes PR7114 and PR6564.
llvm-svn: 103718
(e.g. for C++ operators) in the xml dump.
I also re-enabled the unit test for ast-print-xml (or so I think)
at least, make test didn't fail..."
patch by Sebastien Binet!
llvm-svn: 103671
walk an entire AST, including all of the types, declarations,
statements, and expressions, and allowing one to easily override the
behavior of the walk at any particular node kind.
llvm-svn: 103308
if/switch/while/do/for statements. Previously, we would end up either:
(1) Forgetting to destroy temporaries created in the condition (!),
(2) Destroying the temporaries created in the condition *before*
converting the condition to a boolean value (or, in the case of a
switch statement, to an integral or enumeral value), or
(3) In a for statement, destroying the condition's temporaries at
the end of the increment expression (!).
We now destroy temporaries in conditions at the right times. This
required some tweaking of the Parse/Sema interaction, since the parser
was building full expressions too early in many places.
Fixes PR7067.
llvm-svn: 103187
matching gcc compiler. Fixes #include_next <...> shenanigans that lead to
file-not-found failures with <cstddef> on libstdc++ 4.3.[012].
Updated C++ include header search paths for various Debian/Ubuntu and Fedora
linux distros.
llvm-svn: 103177
over choice of:
t.c:3:11: warning: conversion specifies type 'char *' but the argument has type 'int' [-Wformat]
t.c:3:11: warning: conversion specifies type 'char *' but the argument has type 'int' [-Wformat,1]
t.c:3:11: warning: conversion specifies type 'char *' but the argument has type 'int' [-Wformat,Format String]
dox to come.
llvm-svn: 103056
print the diagnostic category number in the [] at the end
of the line. For example:
$ cat t.c
#include <stdio.h>
void foo() {
printf("%s", 4);
}
$ clang t.c -fsyntax-only -fdiagnostics-print-source-range-info
t.c:3:11:{3:10-3:12}{3:15-3:16}: warning: conversion specifies type 'char *' but the argument has type 'int' [-Wformat,1]
printf("%s", 4);
~^ ~
1 warning generated.
Clients that want category information can now pick the number
out of the output, rdar://7928231.
More coming.
llvm-svn: 103053
printed in a diagnostic, similar to the limit we already have on the
depth of the template instantiation backtrace. The macro instantiation
backtrace is limited to 10 "instantiated from:" diagnostics; when it's
longer than that, we'll show the first half, then say how many were
suppressed, then show the second half. The limit can be changed with
-fmacro-instantiation-limit=N, and turned off with N=0.
This eliminates a lot of note spew with libraries making use of the
Boost.Preprocess library.
llvm-svn: 103014
the DeclContext for the translation unit. This is to workaround a fundamental issue in how
ObjC decls (within an @implementation) are parsed before the ObjCContainerDecl is available.
llvm-svn: 102944
(-Wunused-exception-parameter) than normal variables, since it's more
common to name and then ignore an exception parameter. This warning is
neither enabled by default nor by -Wall. Fixes <rdar://problem/7931045>.
llvm-svn: 102931
translation unit is parsed. This enables us to inline some calls when still
analyzing one function at a time.
Actions are classified into Function, CXXMethod, ObjCMethod,
ObjCImplementation.
This does not hurt performance much. The analysis time for sqlite3.c:
before:
real 17m52.440s
user 17m49.460s
sys 0m2.010s
after:
real 18m0.500s
user 17m56.900s
sys 0m2.330s
DisplayProgress option is broken now. -inine-call action is removed. It
will be reenabled in another form, perhaps as an indenpendant option.
llvm-svn: 102689
classes, since we only warn (not error) on offsetof() for non-POD
types. We store the base path within the OffsetOfExpr itself, then
evaluate the offsets within the constant evaluator.
llvm-svn: 102571
Amadini.
This change introduces a new expression node type, OffsetOfExpr, that
describes __builtin_offsetof. Previously, __builtin_offsetof was
implemented using a unary operator whose subexpression involved
various synthesized array-subscript and member-reference expressions,
which was ugly and made it very hard to instantiate as a
template. OffsetOfExpr represents the AST more faithfully, with proper
type source information and a more compact representation.
OffsetOfExpr also has support for dependent __builtin_offsetof
expressions; it can be value-dependent, but will never be
type-dependent (like sizeof or alignof). This commit introduces
template instantiation for __builtin_offsetof as well.
There are two major caveats to this patch:
1) CodeGen cannot handle the case where __builtin_offsetof is not a
constant expression, so it produces an error. So, to avoid
regressing in C, we retain the old UnaryOperator-based
__builtin_offsetof implementation in C while using the shiny new
OffsetOfExpr implementation in C++. The old implementation can go
away once we have proper CodeGen support for this case, which we
expect won't cause much trouble in C++.
2) __builtin_offsetof doesn't work well with non-POD class types,
particularly when the designated field is found within a base
class. I will address this in a subsequent patch.
Fixes PR5880 and a bunch of assertions when building Boost.Python
tests.
llvm-svn: 102542
of a class template or class template partial specialization. That is to
say, in
template <class T> class A { ... };
or
template <class T> class B<const T*> { ... };
make 'A<T>' and 'B<const T*>' sugar for the corresponding InjectedClassNameType
when written inside the appropriate context. This allows us to track the
current instantiation appropriately even inside AST routines. It also allows
us to compute a DeclContext for a type much more efficiently, at some extra
cost every time we write a template specialization (which can be optimized,
but I've left it simple in this patch).
llvm-svn: 102407
.S files. "# 123" is passed through as-is, not treated as a line
marker in this mode. No testcase, because it would be nasty and isn't
worth it.
llvm-svn: 102391
thing. Audit all uses of Type::isStructure(), changing those calls to
isStructureOrClassType() as needed (which is alsmost
everywhere). Fixes the remaining failure in Boost.Utility/Swap.
llvm-svn: 102386
- Replace -cc1 level -fobjc-legacy-dispatch with -fobjc-dispatch-method={legacy,non-legacy,mixed}.
- Lift "mixed" vs "non-mixed" policy choice up to driver level, instead of being buried in CGObjCMac.cpp.
- No intended functionality change.
llvm-svn: 102255
statements. Instead of the @try having a single @catch, where all of
the @catch's were chained (using an O(n^2) algorithm nonetheless),
@try just holds an array of its @catch blocks. The resulting AST is
slightly more compact (not important) and better represents the actual
language semantics (good).
llvm-svn: 102221
expressions, to improve source-location information, clarify the
actual receiver of the message, and pave the way for proper C++
support. The ObjCMessageExpr node represents four different kinds of
message sends in a single AST node:
1) Send to a object instance described by an expression (e.g., [x method:5])
2) Send to a class described by the class name (e.g., [NSString method:5])
3) Send to a superclass class (e.g, [super method:5] in class method)
4) Send to a superclass instance (e.g., [super method:5] in instance method)
Previously these four cases where tangled together. Now, they have
more distinct representations. Specific changes:
1) Unchanged; the object instance is represented by an Expr*.
2) Previously stored the ObjCInterfaceDecl* referring to the class
receiving the message. Now stores a TypeSourceInfo* so that we know
how the class was spelled. This both maintains typedef information
and opens the door for more complicated C++ types (e.g., dependent
types). There was an alternative, unused representation of these
sends by naming the class via an IdentifierInfo *. In practice, we
either had an ObjCInterfaceDecl *, from which we would get the
IdentifierInfo *, or we fell into the case below...
3) Previously represented by a class message whose IdentifierInfo *
referred to "super". Sema and CodeGen would use isStr("super") to
determine if they had a send to super. Now represented as a
"class super" send, where we have both the location of the "super"
keyword and the ObjCInterfaceDecl* of the superclass we're
targetting (statically).
4) Previously represented by an instance message whose receiver is a
an ObjCSuperExpr, which Sema and CodeGen would check for via
isa<ObjCSuperExpr>(). Now represented as an "instance super" send,
where we have both the location of the "super" keyword and the
ObjCInterfaceDecl* of the superclass we're targetting
(statically). Note that ObjCSuperExpr only has one remaining use in
the AST, which is for "super.prop" references.
The new representation of ObjCMessageExpr is 2 pointers smaller than
the old one, since it combines more storage. It also eliminates a leak
when we loaded message-send expressions from a precompiled header. The
representation also feels much cleaner to me; comments welcome!
This patch attempts to maintain the same semantics we previously had
with Objective-C message sends. In several places, there are massive
changes that boil down to simply replacing a nested-if structure such
as:
if (message has a receiver expression) {
// instance message
if (isa<ObjCSuperExpr>(...)) {
// send to super
} else {
// send to an object
}
} else {
// class message
if (name->isStr("super")) {
// class send to super
} else {
// send to class
}
}
with a switch
switch (E->getReceiverKind()) {
case ObjCMessageExpr::SuperInstance: ...
case ObjCMessageExpr::Instance: ...
case ObjCMessageExpr::SuperClass: ...
case ObjCMessageExpr::Class:...
}
There are quite a few places (particularly in the checkers) where
send-to-super is effectively ignored. I've placed FIXMEs in most of
them, and attempted to address send-to-super in a reasonable way. This
could use some review.
llvm-svn: 101972
we will print with each error that occurs during template
instantiation. When the backtrace is longer than that, we will print
N/2 of the innermost backtrace entries and N/2 of the outermost
backtrace entries, then skip the middle entries with a note such as:
note: suppressed 2 template instantiation contexts; use
-ftemplate-backtrace-limit=N to change the number of template
instantiation entries shown
This should eliminate some excessively long backtraces that aren't
providing any value.
llvm-svn: 101882
function declaration, since it may end up being changed (e.g.,
"extern" can become "static" if a prior declaration was static). Patch
by Enea Zaffanella and Paolo Bolzoni.
llvm-svn: 101826
implemented precisely the same as GCC, but the distinction GCC makes isn't
useful to represent. This allows parsing code which uses GCC-specific keywords
('asm', etc.) without parsing in a fully GNU mode.
llvm-svn: 101667
large files, this doesn't seem significantly better than just letting
raw_ostream pick a buffer size.
This code predates raw-ostream's automatic buffer sizing; in fact, it
was introduced as part of the code which would eventually become
raw_ostream.
llvm-svn: 101473
source line wider than the terminal where the associated fix-it line
is longer than the caret line. Previously, we would crash in this
case, which was rather unfortunate. Fixes <rdar://problem/7856226>.
llvm-svn: 101426
- Note that this is a behavior change, previously -mllvm at the driver level forwarded to clang -cc1. The driver does a little magic to make sure that '-mllvm -disable-llvm-optzns' works correctly, but other users will need to be updated to use -Xclang.
llvm-svn: 101354
separate count of "suppressed" errors. This way, semantic analysis
bits that depend on the error count to determine whether problems
occured (e.g., some template argument deduction failures, jump-scope
checking) will not get confused.
The actual problem here is that a missing #include (which is a fatal
error) could cause the jump-scope checker to run on invalid code,
which it is not prepared to do. Trivial fix for both
<rdar://problem/7775941> and <rdar://problem/7775709>.
llvm-svn: 101297
Without it, there is no reason for a compiler that supports it to
emit the dead static globals that the rewriter labels attribute(used).
llvm-svn: 101149
actually turned it on. If a diag is produced by a warning which
is an extension but defaults to on, and has no warning group, don't
print any option info.
llvm-svn: 101071
Remove -faccess-control from -cc1; add -fno-access-control.
Make the driver pass -fno-access-control by default.
Update a bunch of tests to be correct under access control.
llvm-svn: 100880
precompiled headers and/or when reading the contents of the file into
memory. These checks seem to be causing spurious regression-test
failures on Windows.
llvm-svn: 100866
of errors and warnings. This allows us to emit something like this:
2 warnings and 1 error generated.
instead of:
3 diagnostics generated.
This also stops counting 'notes' because they are just follow-on information
about the previous diag, not a diagnostic in themselves.
llvm-svn: 100675
presence of precompiled headers by forcibly loading all of the
methods we know about from the PCH file before constructing our
code-completion list.
llvm-svn: 100535
ASTUnit. Previously, we would end up with use-after-free errors
because the Diagnostic object would be creating in one place (say,
CIndex) and its ownership would not be transferred into the
ASTUnit. Fixes <rdar://problem/7818608>.
llvm-svn: 100464
- Rename "Diagnostics" and related to "StoredDiagnostics", to better
capture what we're actually storing.
- Move SourceManager and FileManager to the heap.
llvm-svn: 100441
This introduces FunctionType::ExtInfo to hold the calling convention and the
noreturn attribute. The next patch will extend it to include the regparm
attribute and fix the bug.
llvm-svn: 99920
ranges as part of the ASTContext. This code is not and was never used,
but contributes ~250k to the size of the Cocoa.h precompiled
header.
llvm-svn: 99007
record (which includes all macro instantiations and definitions). As
with all lay deserialization, this introduces a new external source
(here, an external preprocessing record source) that loads all of the
preprocessed entities prior to iterating over the entities.
The preprocessing record is an optional part of the precompiled header
that is disabled by default (enabled with
-detailed-preprocessing-record). When the preprocessor given to the
PCH writer has a preprocessing record, that record is written into the
PCH file. When the PCH reader is given a PCH file that contains a
preprocessing record, it will be lazily loaded (which, effectively,
implicitly adds -detailed-preprocessing-record). This is the first
case where we have sections of the precompiled header that are
added/removed based on a compilation flag, which is
unfortunate. However, this data consumes ~550k in the PCH file for
Cocoa.h (out of ~9.9MB), and there is a non-trivial cost to gathering
this detailed preprocessing information, so it's too expensive to turn
on by default. In the future, we should investigate a better encoding
of this information.
llvm-svn: 99002
the macro definitions and macro instantiations that are found
during preprocessing. Preprocessing records are *not* generated by
default; rather, we provide a PPCallbacks subclass that hooks into the
existing callback mechanism to record this activity.
The only client of preprocessing records is CIndex, which keeps track
of macro definitions and instantations so that they can be exposed via
cursors. At present, only token annotation uses these facilities, and
only for macro instantiations; both will change in the near
future. However, with this change, token annotation properly annotates
macro instantiations that do not produce any tokens and instantiations
of macros that are later undef'd, improving our consistency.
Preprocessing directives that are not macro definitions are still
handled by clang_annotateTokens() via re-lexing, so that we don't have
to track every preprocessing directive in the preprocessing record.
Performance impact of preprocessing records is still TBD, although it
is limited to CIndex and therefore out of the path of the main compiler.
llvm-svn: 98836
presence or absence of header map arguments when using the precompiled
header would cause Clang to get confused about which headers had
already been included/imported, along with their controlling
macros. The fundamental problem is that the serialization of the
header search information was relying on the UIDs of FileEntry objects
at PCH generation time and PCH load time to be equivalent, which
effectively means that we had to probe the same files in the same
order. Differing header map arguments caused an extra FileEntry
lookup, but it's easy to imagine other minor command-line arguments
triggering this problem.
Header-search information is now encoded along with the
source-location entry for a file, so that we register information
about a file's properties as a header at the same time we create the
FileEntry for that file.
Fixes <rdar://problem/7743243>.
llvm-svn: 98636
SourceManager's getBuffer() (and similar) operations. This abstract
can be used to force callers to cope with errors in getBuffer(), such
as missing files and changed files. Fix a bunch of callers to use the
new interface.
Add some very basic checks for file consistency (file size,
modification time) into ContentCache::getBuffer(), although these
checks don't help much until we've updated the main callers (e.g.,
SourceManager::getSpelling()).
llvm-svn: 98585
on unqualified declarations.
Patch by Enea Zaffanella! Minimal adjustments: allocate the ExtInfo nodes
with the ASTContext and delete them during Destroy(). I audited a bunch of
Destroy methods at the same time, to ensure that the correct teardown was
being done.
llvm-svn: 98540
injected class name of a class template or class template partial specialization.
This is a non-canonical type; the canonical type is still a template
specialization type. This becomes the TypeForDecl of the pattern declaration,
which cleans up some amount of code (and complicates some other parts, but
whatever).
Fixes PR6326 and probably a few others, primarily by re-establishing a few
invariants about TypeLoc sizes.
llvm-svn: 98134
copy the source buffers provided rather than referencing them
directly, so that the caller can free those buffers immediately after
calling clang_createTranslationUnitFromSourceFile(). Otherwise, we
risk hitting those buffers later (when building source ranges, forming
diagnostics, etc.).
llvm-svn: 97296