Summary:
This patch introduces the skeleton of the constexpr interpreter,
capable of evaluating a simple constexpr functions consisting of
if statements. The interpreter is described in more detail in the
RFC. Further patches will add more features.
Reviewers: Bigcheese, jfb, rsmith
Subscribers: bruno, uenoku, ldionne, Tyker, thegameg, tschuett, dexonsmith, mgorny, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64146
llvm-svn: 371834
levels:
-- none: no lax vector conversions [new GCC default]
-- integer: only conversions between integer vectors [old GCC default]
-- all: all conversions between same-size vectors [Clang default]
For now, Clang still defaults to "all" mode, but per my proposal on
cfe-dev (2019-04-10) the default will be changed to "integer" as soon as
that doesn't break lots of testcases. (Eventually I'd like to change the
default to "none" to match GCC and general sanity.)
Following GCC's behavior, the driver flag -flax-vector-conversions is
translated to -flax-vector-conversions=integer.
This reinstates r371805, reverted in r371813, with an additional fix for
lldb.
llvm-svn: 371817
levels:
-- none: no lax vector conversions [new GCC default]
-- integer: only conversions between integer vectors [old GCC default]
-- all: all conversions between same-size vectors [Clang default]
For now, Clang still defaults to "all" mode, but per my proposal on
cfe-dev (2019-04-10) the default will be changed to "integer" as soon as
that doesn't break lots of testcases. (Eventually I'd like to change the
default to "none" to match GCC and general sanity.)
Following GCC's behavior, the driver flag -flax-vector-conversions is
translated to -flax-vector-conversions=integer.
llvm-svn: 371805
Traditionally, clang-tidy uses the term check, and the analyzer uses checker,
but in the very early years, this wasn't the case, and code originating from the
early 2010's still incorrectly refer to checkers as checks.
This patch attempts to hunt down most of these, aiming to refer to checkers as
checkers, but preserve references to callback functions (like checkPreCall) as
checks.
Differential Revision: https://reviews.llvm.org/D67140
llvm-svn: 371760
Summary:
This adds `-fwasm-exceptions` (in similar fashion with
`-fdwarf-exceptions` or `-fsjlj-exceptions`) that turns on everything
with wasm exception handling from the frontend to the backend.
We currently have `-mexception-handling` in clang frontend, but this is
only about the architecture capability and does not turn on other
necessary options such as the exception model in the backend. (This can
be turned on with `llc -exception-model=wasm`, but llc is not invoked
separately as a command line tool, so this option has to be transferred
from clang.)
Turning on `-fwasm-exceptions` in clang also turns on
`-mexception-handling` if not specified, and will error out if
`-mno-exception-handling` is specified.
Reviewers: dschuff, tlively, sbc100
Subscribers: aprantl, jgravelle-google, sunfish, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67208
llvm-svn: 371708
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
llvm-svn: 371635
This reverts commit r371584. It introduced a dependency from compiler-rt
to llvm/include/ADT, which is problematic for multiple reasons.
One is that it is a novel dependency edge, which needs cross-compliation
machinery for llvm/include/ADT (yes, it is true that right now
compiler-rt included only header-only libraries, however, if we allow
compiler-rt to depend on anything from ADT, other libraries will
eventually get used).
Secondly, depending on ADT from compiler-rt exposes ADT symbols from
compiler-rt, which would cause ODR violations when Clang is built with
the profile library.
llvm-svn: 371598
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
llvm-svn: 371584
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
llvm-svn: 371484
As far as I can tell, gcc passes 256/512 bit vectors __int128 in memory. And passes a vector of 1 _int128 in an xmm register. The backend considers <X x i128> as an illegal type and will scalarize any arguments with that type. So we need to coerce the argument types in the frontend to match to avoid the illegal type.
I'm restricting this to change to Linux and NetBSD based on the
how similar ABI changes have been handled in the past.
PS4, FreeBSD, and Darwin are unaffected. I've also added a
new -fclang-abi-compat version to restore the old behavior.
This issue was identified in PR42607. Though even with the types changed, we still seem to be doing some unnecessary stack realignment.
llvm-svn: 371169
Summary:
This significantly reduces the time required to run clangd tests, by
~10%.
Should also have an effect on other tests that run command-line parsing
multiple times inside a single invocation.
Reviewers: gribozavr, sammccall
Reviewed By: sammccall
Subscribers: kadircet, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67163
llvm-svn: 370908
Breaks BUILD_SHARED_LIBS build, introduces cycles in library dependency
graphs. (clangInterp depends on clangAST which depends on clangInterp)
This reverts r370839, which is an yet another recommit of D64146.
llvm-svn: 370874
Summary:
This patch introduces the skeleton of the constexpr interpreter,
capable of evaluating a simple constexpr functions consisting of
if statements. The interpreter is described in more detail in the
RFC. Further patches will add more features.
Reviewers: Bigcheese, jfb, rsmith
Subscribers: bruno, uenoku, ldionne, Tyker, thegameg, tschuett, dexonsmith, mgorny, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64146
llvm-svn: 370839
Summary:
This patch introduces the skeleton of the constexpr interpreter,
capable of evaluating a simple constexpr functions consisting of
if statements. The interpreter is described in more detail in the
RFC. Further patches will add more features.
Reviewers: Bigcheese, jfb, rsmith
Subscribers: bruno, uenoku, ldionne, Tyker, thegameg, tschuett, dexonsmith, mgorny, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64146
llvm-svn: 370636
Summary:
This patch introduces the skeleton of the constexpr interpreter,
capable of evaluating a simple constexpr functions consisting of
if statements. The interpreter is described in more detail in the
RFC. Further patches will add more features.
Reviewers: Bigcheese, jfb, rsmith
Subscribers: bruno, uenoku, ldionne, Tyker, thegameg, tschuett, dexonsmith, mgorny, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64146
llvm-svn: 370584
Summary:
This patch introduces the skeleton of the constexpr interpreter,
capable of evaluating a simple constexpr functions consisting of
if statements. The interpreter is described in more detail in the
RFC. Further patches will add more features.
Reviewers: Bigcheese, jfb, rsmith
Subscribers: bruno, uenoku, ldionne, Tyker, thegameg, tschuett, dexonsmith, mgorny, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64146
llvm-svn: 370531
Summary:
This patch introduces the skeleton of the constexpr interpreter,
capable of evaluating a simple constexpr functions consisting of
if statements. The interpreter is described in more detail in the
RFC. Further patches will add more features.
Reviewers: Bigcheese, jfb, rsmith
Subscribers: bruno, uenoku, ldionne, Tyker, thegameg, tschuett, dexonsmith, mgorny, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64146
llvm-svn: 370476
I've been working on a new tool, llvm-ifs, for merging interface stub files
generated by clang and I've iterated on my derivative format of TBE to a newer
format. llvm-ifs will only support the new format, so I am going to drop the
older experimental interface stubs formats in this commit to make things
simpler.
Differential Revision: https://reviews.llvm.org/D66573
llvm-svn: 369719
After posting llvm-ifs on phabricator, I made some progress in hardening up how
I think the format for Interface Stubs should look. There are a number of
things I think the TBE format was missing (no endianness, no info about the
Object Format because it assumes ELF), so I have added those and broken off
from being as similar to the TBE schema. In a subsequent commit I can drop the
other formats.
An example of how The format will look is as follows:
--- !experimental-ifs-v1
IfsVersion: 1.0
Triple: x86_64-unknown-linux-gnu
ObjectFileFormat: ELF
Symbols:
_Z9nothiddenv: { Type: Func }
_Z10cmdVisiblev: { Type: Func }
...
The format is still marked experimental.
Differential Revision: https://reviews.llvm.org/D66446
llvm-svn: 369715
Summary:
This patch introduces a new `analyzer-config` configuration:
`-analyzer-config silence-checkers`
which could be used to silence the given checkers.
It accepts a semicolon separated list, packed into quotation marks, e.g:
`-analyzer-config silence-checkers="core.DivideZero;core.NullDereference"`
It could be used to "disable" core checkers, so they model the analysis as
before, just if some of them are too noisy it prevents to emit reports.
This patch also adds support for that new option to the scan-build.
Passing the option `-disable-checker core.DivideZero` to the scan-build
will be transferred to `-analyzer-config silence-checkers=core.DivideZero`.
Reviewed By: NoQ, Szelethus
Differential Revision: https://reviews.llvm.org/D66042
llvm-svn: 369078
The default behavior of Clang's indirect function call checker will replace
the address of each CFI-checked function in the output file's symbol table
with the address of a jump table entry which will pass CFI checks. We refer
to this as making the jump table `canonical`. This property allows code that
was not compiled with ``-fsanitize=cfi-icall`` to take a CFI-valid address
of a function, but it comes with a couple of caveats that are especially
relevant for users of cross-DSO CFI:
- There is a performance and code size overhead associated with each
exported function, because each such function must have an associated
jump table entry, which must be emitted even in the common case where the
function is never address-taken anywhere in the program, and must be used
even for direct calls between DSOs, in addition to the PLT overhead.
- There is no good way to take a CFI-valid address of a function written in
assembly or a language not supported by Clang. The reason is that the code
generator would need to insert a jump table in order to form a CFI-valid
address for assembly functions, but there is no way in general for the
code generator to determine the language of the function. This may be
possible with LTO in the intra-DSO case, but in the cross-DSO case the only
information available is the function declaration. One possible solution
is to add a C wrapper for each assembly function, but these wrappers can
present a significant maintenance burden for heavy users of assembly in
addition to adding runtime overhead.
For these reasons, we provide the option of making the jump table non-canonical
with the flag ``-fno-sanitize-cfi-canonical-jump-tables``. When the jump
table is made non-canonical, symbol table entries point directly to the
function body. Any instances of a function's address being taken in C will
be replaced with a jump table address.
This scheme does have its own caveats, however. It does end up breaking
function address equality more aggressively than the default behavior,
especially in cross-DSO mode which normally preserves function address
equality entirely.
Furthermore, it is occasionally necessary for code not compiled with
``-fsanitize=cfi-icall`` to take a function address that is valid
for CFI. For example, this is necessary when a function's address
is taken by assembly code and then called by CFI-checking C code. The
``__attribute__((cfi_jump_table_canonical))`` attribute may be used to make
the jump table entry of a specific function canonical so that the external
code will end up taking a address for the function that will pass CFI checks.
Fixes PR41972.
Differential Revision: https://reviews.llvm.org/D65629
llvm-svn: 368495
This patch is a prerequisite for using LangStandard from Driver in
https://reviews.llvm.org/D64793.
It moves LangStandard* and InputKind::Language to Basic. It is mostly
mechanical, with only a few changes of note:
- enum Language has been changed into enum class Language : uint8_t to
avoid a clash between OpenCL in enum Language and OpenCL in enum
LangFeatures and not to increase the size of class InputKind.
- Now that getLangStandardForName, which is currently unused, also checks
both canonical and alias names, I've introduced a helper getLangKind
which factors out a code pattern already used 3 times.
The patch has been tested on x86_64-pc-solaris2.11, sparcv9-sun-solaris2.11,
and x86_64-pc-linux-gnu.
There's a companion patch for lldb which uses LangStandard.h
(https://reviews.llvm.org/D65717).
While polly includes isl which in turn uses InputKind::C, that part of the
code isn't even built inside the llvm tree. I've posted a patch to allow
for both InputKind::C and Language::C upstream
(https://groups.google.com/forum/#!topic/isl-development/6oEvNWOSQFE).
Differential Revision: https://reviews.llvm.org/D65562
llvm-svn: 367864
1. raw_ostream supports ANSI colors so that you can write messages to
the termina with colors. Previously, in order to change and reset
color, you had to call `changeColor` and `resetColor` functions,
respectively.
So, if you print out "error: " in red, for example, you had to do
something like this:
OS.changeColor(raw_ostream::RED);
OS << "error: ";
OS.resetColor();
With this patch, you can write the same code as follows:
OS << raw_ostream::RED << "error: " << raw_ostream::RESET;
2. Add a boolean flag to raw_ostream so that you can disable colored
output. If you disable colors, changeColor, operator<<(Color),
resetColor and other color-related functions have no effect.
Most LLVM tools automatically prints out messages using colors, and
you can disable it by passing a flag such as `--disable-colors`.
This new flag makes it easy to write code that works that way.
Differential Revision: https://reviews.llvm.org/D65564
llvm-svn: 367649
Rename lang mode flag to -cl-std=clc++/-cl-std=CLC++
or -std=clc++/-std=CLC++.
This aligns with OpenCL C conversion and removes ambiguity
with OpenCL C++.
Differential Revision: https://reviews.llvm.org/D65102
llvm-svn: 367008
Summary:
Move `-ftime-trace-granularity` option to frontend options. Without patch
this option is showed up in the help for any tool that links libSupport.
Reviewers: sammccall
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D65202
llvm-svn: 366911
with '-mframe-pointer'
After D56351 and D64294, frame pointer handling is migrated to tri-state
(all, non-leaf, none) in clang driver and on the function attribute.
This patch makes the frame pointer handling cc1 option tri-state.
Reviewers: chandlerc, rnk, t.p.northover, MaskRay
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D56353
llvm-svn: 366645
gcc PowerPC supports 3 representations of long double:
* -mlong-double-64
long double has the same representation of double but is mangled as `e`.
In clang, this is the default on AIX, FreeBSD and Linux musl.
* -mlong-double-128
2 possible 128-bit floating point representations:
+ -mabi=ibmlongdouble
IBM extended double format. Mangled as `g`
In clang, this is the default on Linux glibc.
+ -mabi=ieeelongdouble
IEEE 754 quadruple-precision format. Mangled as `u9__ieee128` (`U10__float128` before gcc 8.2)
This is currently unavailable.
This patch adds -mabi=ibmlongdouble and -mabi=ieeelongdouble, and thus
makes the IEEE 754 quadruple-precision long double available for
languages supported by clang.
Reviewed By: hfinkel
Differential Revision: https://reviews.llvm.org/D64283
llvm-svn: 366044
This patch makes the driver option -mlong-double-128 available for X86
and PowerPC. The CC1 option -mlong-double-128 is available on all targets
for users to test on unsupported targets.
On PowerPC, -mlong-double-128 uses the IBM extended double format
because we don't support -mabi=ieeelongdouble yet (D64283).
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D64277
llvm-svn: 365866
-mlong-double-64 is supported on some ports of gcc (i386, x86_64, and ppc{32,64}).
On many other targets, there will be an error:
error: unrecognized command line option '-mlong-double-64'
This patch makes the driver option -mlong-double-64 available for x86
and ppc. The CC1 option -mlong-double-64 is available on all targets for
users to test on unsupported targets.
LongDoubleSize is added as a VALUE_LANGOPT so that the option can be
shared with -mlong-double-128 when we support it in clang.
Also, make powerpc*-linux-musl default to use 64-bit long double. It is
currently the only supported ABI on musl and is also how people
configure powerpc*-linux-musl-gcc.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D64067
llvm-svn: 365412
Summary:
The changes in D59673 made the choice redundant, since we can achieve
single-file split DWARF just by not setting an output file name.
Like llc we can also derive whether to enable Split DWARF from whether
-split-dwarf-file is set, so we don't need the flag at all anymore.
The test CodeGen/split-debug-filename.c distinguished between having set
or not set -enable-split-dwarf with -split-dwarf-file, but we can
probably just always emit the metadata into the IR.
The flag -split-dwarf wasn't used at all anymore.
Reviewers: dblaikie, echristo
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D63167
llvm-svn: 364479
The option enables debug info about parameter's entry values.
The example of using the option:
clang -g -O2 -Xclang -femit-debug-entry-values test.c
In addition, when the option is set add the flag all_call_sites
in a subprogram in order to support GNU extension as well.
([3/13] Introduce the debug entry values.)
Co-authored-by: Ananth Sowda <asowda@cisco.com>
Co-authored-by: Nikola Prica <nikola.prica@rt-rk.com>
Co-authored-by: Ivan Baev <ibaev@cisco.com>
Differential Revision: https://reviews.llvm.org/D58033
llvm-svn: 364399
This change reverts r363649; effectively re-landing r363626. At this point
clang::Index::CodegenNameGeneratorImpl has been refactored into
clang::AST::ASTNameGenerator. This makes it so that the previous circular link
dependency no longer exists, fixing the previous share lib
(-DBUILD_SHARED_LIBS=ON) build issue which was the reason for r363649.
Clang interface stubs (previously referred to as clang-ifsos) is a new frontend
action in clang that allows the generation of stub files that contain mangled
name info that can be used to produce a stub library. These stub libraries can
be useful for breaking up build dependencies and controlling access to a
library's internal symbols. Generation of these stubs can be invoked by:
clang -fvisibility=<visibility> -emit-interface-stubs \
-interface-stub-version=<interface format>
Notice that -fvisibility (along with use of visibility attributes) can be used
to control what symbols get generated. Currently the interface format is
experimental but there are a wide range of possibilities here.
Currently clang-ifs produces .ifs files that can be thought of as analogous to
object (.o) files, but just for the mangled symbol info. In a subsequent patch
I intend to add support for merging the .ifs files into one .ifs/.ifso file
that can be the input to something like llvm-elfabi to produce something like a
.so file or .dll (but without any of the code, just symbols).
Differential Revision: https://reviews.llvm.org/D60974
llvm-svn: 363948
Using the -fdeclare-opencl-builtins option will require a way to
predefine types and macros such as `int4`, `CLK_GLOBAL_MEM_FENCE`,
etc. Move these out of opencl-c.h into opencl-c-base.h such that the
latter can be shared by -fdeclare-opencl-builtins and
-finclude-default-header.
This changes the behaviour of -finclude-default-header when
-fdeclare-opencl-builtins is specified: instead of including the full
header, it will include the header with only the base definitions.
Differential revision: https://reviews.llvm.org/D63256
llvm-svn: 363794
This reverts commit rC363626.
clangIndex depends on clangFrontend. r363626 adds a dependency from
clangFrontend to clangIndex, which creates a circular dependency.
This is disallowed by -DBUILD_SHARED_LIBS=on builds:
CMake Error: The inter-target dependency graph contains the following strongly connected component (cycle):
"clangFrontend" of type SHARED_LIBRARY
depends on "clangIndex" (weak)
"clangIndex" of type SHARED_LIBRARY
depends on "clangFrontend" (weak)
At least one of these targets is not a STATIC_LIBRARY. Cyclic dependencies are allowed only among static libraries.
Note, the dependency on clangIndex cannot be removed because
libclangFrontend.so is linked with -Wl,-z,defs: a shared object must
have its full direct dependencies specified on the linker command line.
In -DBUILD_SHARED_LIBS=off builds, this appears to work when linking
`bin/clang-9`. However, it can cause trouble to downstream clang library
users. The llvm build system links libraries this way:
clang main_program_object_file ... lib/libclangIndex.a ... lib/libclangFrontend.a -o exe
libclangIndex.a etc are not wrapped in --start-group.
If the downstream application depends on libclangFrontend.a but not any
other clang libraries that depend on libclangIndex.a, this can cause undefined
reference errors when the linker is ld.bfd or gold.
The proper fix is to not include clangIndex files in clangFrontend.
llvm-svn: 363649
Clang interface stubs (previously referred to as clang-ifsos) is a new frontend
action in clang that allows the generation of stub files that contain mangled
name info that can be used to produce a stub library. These stub libraries can
be useful for breaking up build dependencies and controlling access to a
library's internal symbols. Generation of these stubs can be invoked by:
clang -fvisibility=<visibility> -emit-interface-stubs \
-interface-stub-version=<interface format>
Notice that -fvisibility (along with use of visibility attributes) can be used
to control what symbols get generated. Currently the interface format is
experimental but there are a wide range of possibilities here.
Differential Revision: https://reviews.llvm.org/D60974
llvm-svn: 363626
Use -fsave-optimization-record=<format> to specify a different format
than the default, which is YAML.
For now, only YAML is supported.
llvm-svn: 363573