Clang currently crashes for switch statements inside a template when
the condition is a non-integer field. The crash is due to incorrect
type-dependency of field. Type-dependency of member expressions is
currently set based on the containing class. This patch changes this for
'members of the current instantiation' to set the type dependency based
on the member's type instead.
A few lit tests started to fail once I applied this patch because errors
are now diagnosed earlier (does not wait till instantiation). I've modified
these tests in this patch as well.
Patch fixes PR#40982
Differential Revision: https://reviews.llvm.org/D61027
llvm-svn: 368706
As passed in the Cologne meeting and treated by Core as a DR,
[[nodiscard]] was applied to constructors so that they can be diagnosed
in cases where the user forgets a variable name for a type.
The intent is to enable the library to start using this on the
constructors of scope_guard/lock_guard.
Differential Revision: https://reviews.llvm.org/D64914
llvm-svn: 367027
Summary:
D28148 relaxed some checks for assigning { 0 } to a structure for all C
standards, but it failed to handle structures with non-integer
subobjects. Relax -Wmissing-braces checks for such structures, and add
some additional tests.
This fixes PR39931.
Patch By: al3xtjames
Reviewed By: Lekensteyn
Differential Revision: https://reviews.llvm.org/D61838
llvm-svn: 366163
This commit adds a new builtin, __builtin_bit_cast(T, v), which performs a
bit_cast from a value v to a type T. This expression can be evaluated at
compile time under specific circumstances.
The compile time evaluation currently doesn't support bit-fields, but I'm
planning on fixing this in a follow up (some of the logic for figuring this out
is in CodeGen). I'm also planning follow-ups for supporting some more esoteric
types that the constexpr evaluator supports, as well as extending
__builtin_memcpy constexpr evaluation to use the same infrastructure.
rdar://44987528
Differential revision: https://reviews.llvm.org/D62825
llvm-svn: 364954
Summary:
this patch has multiple small improvements related to the APValue in ConstantExpr.
changes:
- APValue in ConstantExpr are now cleaned up using ASTContext::addDestruction instead of there own system.
- ConstantExprBits Stores the ValueKind of the result beaing stored.
- VerifyIntegerConstantExpression now stores the evaluated value in ConstantExpr.
- the Constant Evaluator uses the stored value of ConstantExpr when available.
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D63376
llvm-svn: 364011
Summary:
When using ConstantExpr we often need the result of the expression to be kept in the AST. Currently this is done on a by the node that needs the result and has been done multiple times for enumerator, for constexpr variables... . This patch adds to ConstantExpr the ability to store the result of evaluating the expression. no functional changes expected.
Changes:
- Add trailling object to ConstantExpr that can hold an APValue or an uint64_t. the uint64_t is here because most ConstantExpr yield integral values so there is an optimized layout for integral values.
- Add basic* serialization support for the trailing result.
- Move conversion functions from an enum to a fltSemantics from clang::FloatingLiteral to llvm::APFloatBase. this change is to make it usable for serializing APValues.
- Add basic* Import support for the trailing result.
- ConstantExpr created in CheckConvertedConstantExpression now stores the result in the ConstantExpr Node.
- Adapt AST dump to print the result when present.
basic* : None, Indeterminate, Int, Float, FixedPoint, ComplexInt, ComplexFloat,
the result is not yet used anywhere but for -ast-dump.
Reviewers: rsmith, martong, shafik
Reviewed By: rsmith
Subscribers: rnkovacs, hiraditya, dexonsmith, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62399
llvm-svn: 363493
nullptr_t does not access memory.
We now reuse CK_NullToPointer to represent a conversion from a glvalue
of type nullptr_t to a prvalue of nullptr_t where necessary.
This reinstates r363337, reverted in r363352.
llvm-svn: 363429
Revert 363340 "Remove unused SK_LValueToRValue initialization step."
Revert 363337 "PR23833, DR2140: an lvalue-to-rvalue conversion on a glvalue of type"
Revert 363295 "C++ DR712 and others: handle non-odr-use resulting from an lvalue-to-rvalue conversion applied to a member access or similar not-quite-trivial lvalue expression."
llvm-svn: 363352
nullptr_t does not access memory.
We now reuse CK_NullToPointer to represent a conversion from a glvalue
of type nullptr_t to a prvalue of nullptr_t where necessary.
This reinstates r345562, reverted in r346065, now that CodeGen's
handling of non-odr-used variables has been fixed.
llvm-svn: 363337
most / all other Expr subclasses.
This reinstates r362551, reverted in r362597, with a fix to a bug that
caused MemberExprs to sometimes have a null FoundDecl after a round-trip
through an AST file.
llvm-svn: 362756
Summary:
Constant evaluator does not work on value-dependent or type-dependent
expressions.
Also fixed bugs uncovered by these assertions.
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D61522
llvm-svn: 361050
Summary:
This patch implements the source location builtins `__builtin_LINE(), `__builtin_FUNCTION()`, `__builtin_FILE()` and `__builtin_COLUMN()`. These builtins are needed to implement [`std::experimental::source_location`](https://rawgit.com/cplusplus/fundamentals-ts/v2/main.html#reflection.src_loc.creation).
With the exception of `__builtin_COLUMN`, GCC also implements these builtins, and Clangs behavior is intended to match as closely as possible.
Reviewers: rsmith, joerg, aaron.ballman, bogner, majnemer, shafik, martong
Reviewed By: rsmith
Subscribers: rnkovacs, loskutov, riccibruno, mgorny, kunitoki, alexr, majnemer, hfinkel, cfe-commits
Differential Revision: https://reviews.llvm.org/D37035
llvm-svn: 360937
Improved classification of address space cast when qualification
conversion is performed - prevent adding addr space cast for
non-pointer and non-reference types. Take address space correctly
from the pointee.
Also pass correct address space from 'this' object using
AggValueSlot when generating addrspacecast in the constructor
call.
Differential Revision: https://reviews.llvm.org/D59988
llvm-svn: 357682
This patch includes the necessary code for converting between a fixed point type and integer.
This also includes constant expression evaluation for conversions with these types.
Differential Revision: https://reviews.llvm.org/D56900
llvm-svn: 355462
A recent change caused assertion in CodeGenFunction::EmitBlockCallExpr when a block is called.
There is code
Func = CGM.getOpenCLRuntime().getInvokeFunction(E->getCallee());
getCalleeDecl calls Expr::getReferencedDeclOfCallee, which does not handle
BlockExpr and returns nullptr, which causes isa to assert.
This patch fixes that.
Differential Revision: https://reviews.llvm.org/D58658
llvm-svn: 354893
(Originally commited in r354215 and reverted in r354216 because of a
missed failing clang-tidy test (fix in r354228))
Now that the implementation of all of the Expr::Ignore* is in Expr.cpp
we can try to remove some duplication. Do this by separating the logic
of the Expr::Ignore* from the iterative loop.
This is NFC, except for one change: IgnoreParenImpCasts now skips,
among other things, everything that IgnoreImpCasts skips. This means
FullExpr are now skipped by IgnoreParenImpCasts. This was likely an
oversight when FullExpr was added to the nodes skipped by IgnoreImpCasts.
Differential Revision: https://reviews.llvm.org/D57267
Reviewed By: aaron.ballman (with comments from void and rnk)
llvm-svn: 354232
Now that the implementation of all of the Expr::Ignore* is in Expr.cpp
we can try to remove some duplication. Do this by separating the logic of
the Expr::Ignore* from the iterative loop.
This is NFC, except for one change: IgnoreParenImpCasts now skips, among
other things, everything that IgnoreImpCasts skips. This means FullExpr
are now skipped by IgnoreParenImpCasts. This was likely an oversight when
FullExpr was added to the nodes skipped by IgnoreImpCasts.
Differential Revision: https://reviews.llvm.org/D57267
Reviewed By: aaron.ballman (with comments from void and rnk)
llvm-svn: 354215
The description of what the various Expr::Ignore* do has drifted from the
actual implementation.
Inspection reveals that IgnoreParenImpCasts() is not equivalent to doing
IgnoreParens() + IgnoreImpCasts() until reaching a fixed point, but
IgnoreParenCasts() is equivalent to doing IgnoreParens() + IgnoreCasts()
until reaching a fixed point. There is also a fair amount of duplication
in the various Expr::Ignore* functions which increase the chance of further
future inconsistencies. In preparation for the next patch which will factor
out the implementation of the various Expr::Ignore*, do the following cleanups:
Remove Stmt::IgnoreImplicit, in favor of Expr::IgnoreImplicit. IgnoreImplicit
is the only function among all of the Expr::Ignore* which is available in Stmt.
There are only a few users of Stmt::IgnoreImplicit. They can just use instead
Expr::IgnoreImplicit like they have to do for the other Ignore*.
Move Expr::IgnoreImpCasts() from Expr.h to Expr.cpp. This made no difference
in the run-time with my usual benchmark (-fsyntax-only on all of Boost).
While we are at it, make IgnoreParenNoopCasts take a const reference to the
ASTContext for const correctness.
Update the comments to match what the Expr::Ignore* are actually doing.
I am not sure that listing exactly what each Expr::Ignore* do is optimal,
but it certainly looks better than the current state which is in my opinion
between misleading and just plain wrong.
The whole patch is NFC (if you count removing Stmt::IgnoreImplicit as NFC).
Differential Revision: https://reviews.llvm.org/D57266
Reviewed By: aaron.ballman
llvm-svn: 353006
Store the controlling expression, the association expressions and the
corresponding TypeSourceInfos as trailing objects.
Additionally use the bit-fields of Stmt to store one SourceLocation,
saving one additional pointer. This saves 3 pointers in total per
GenericSelectionExpr.
Differential Revision: https://reviews.llvm.org/D57104
Reviewed By: aaron.ballman
Reviewers: aaron.ballman, steveire
llvm-svn: 352276
Various cleanups to GenericSelectionExpr factored out of D57104. In particular:
1. Move the friend declaration to the top.
2. Introduce a constant ResultDependentIndex instead of the magic "-1".
3. clang-format
4. Group the member function together so that they can be removed as one block
by D57106.
NFC.
Differential Revision: https://reviews.llvm.org/D57238
Reviewed By: aaron.ballman
llvm-svn: 352275
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Set address spaces of 'this' param correctly for implicit special
class members.
This also changes initialization conversion sequence to separate
address space conversion from other qualifiers in case of binding
reference to a temporary. In this case address space conversion
should happen after the binding (unlike for other quals). This is
needed to materialize it correctly in the alloca address space.
Initial patch by Mikael Nilssoni!
Differential Revision: https://reviews.llvm.org/D56066
llvm-svn: 351053
The number of trailing CXXBaseSpecifiers in CastExpr was moved from
CastExprBitfields to a trailing object in r338489 (D50050). At this time these
bit-fields classes were only 32 bits wide. However later r345459 widened these
bit-field classes to 64 bits.
The reason for this change was that on 64 bit archs alignment requirements
caused 4 bytes of padding after the Stmt sub-object in nearly all expression
classes. Reusing this padding yielded an >10% reduction in the size used by all
statement/expressions when parsing all of Boost (on a 64 bit arch). This
increased the size of statement/expressions for 32 bits archs, but this can be
mitigated by moving more data to the bit-fields of Stmt (and moreover most
people now care about 64 bits archs as a host).
Therefore move back the number of CXXBaseSpecifiers in CastExpr to the
bit-fields of Stmt. This in effect mostly revert r338489 while keeping the
added test.
Differential Revision: https://reviews.llvm.org/D56358
Reviewed By: lebedev.ri
Reviewers: lebedev.ri, rjmccall
llvm-svn: 350741
When a function returns a type and that type was declared [[nodiscard]], we diagnose any unused results from that call as though the function were marked nodiscard. The same behavior should apply to calls through a function pointer.
This addresses PR31526.
llvm-svn: 350317
Summary:
This moves it up from IgnoreParenImpCasts to IgnoreParens, so that more
helpers ignore it. For most clients, this ensures that these helpers
behave the same with and without C++17 enabled, which is what appears to
introduce these new expression nodes.
Fixes PR39881
Reviewers: void, rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D55853
llvm-svn: 350068
Since CallExpr::setNumArgs has been removed, it is now possible to store the
callee expression and the argument expressions of CallExpr in a trailing array.
This saves one pointer per CallExpr, CXXOperatorCallExpr, CXXMemberCallExpr,
CUDAKernelCallExpr and UserDefinedLiteral.
Given that CallExpr is used as a base of the above classes we cannot use
llvm::TrailingObjects. Instead we store the offset in bytes from the this pointer
to the start of the trailing objects and manually do the casts + arithmetic.
Some notes:
1.) I did not try to fit the number of arguments in the bit-fields of Stmt.
This leaves some space for future additions and avoid the discussion about
whether x bits are sufficient to hold the number of arguments.
2.) It would be perfectly possible to recompute the offset to the trailing
objects before accessing the trailing objects. However the trailing objects
are frequently accessed and benchmarks show that it is slightly faster to
just load the offset from the bit-fields. Additionally, because of 1),
we have plenty of space in the bit-fields of Stmt.
Differential Revision: https://reviews.llvm.org/D55771
Reviewed By: rjmccall
llvm-svn: 349910
All of the other constructors already take a reference to the AST context.
This avoids calling Decl::getASTContext in most cases. Additionally move
the definition of the constructor from Expr.h to Expr.cpp since it is calling
DeclRefExpr::computeDependence. NFC.
llvm-svn: 349901
Move some diagnostics around between Diagnostic*Kinds.td files. Diagnostics
used in multiple places were moved to DiagnosticCommonKinds.td. Diagnostics
listed in the wrong place (ie, Sema diagnostics listed in
DiagnosticsParseKinds.td) were moved to the correct places. One diagnostic
split into two so that the diagnostic string is in the .td file instead of in
code. Cleaned up the diagnostic includes after all the changes.
llvm-svn: 349125
Summary:
Currently the Clang AST doesn't store information about how the callee of a CallExpr was found. Specifically if it was found using ADL.
However, this information is invaluable to tooling. Consider a tool which renames usages of a function. If the originally CallExpr was formed using ADL, then the tooling may need to additionally qualify the replacement.
Without information about how the callee was found, the tooling is left scratching it's head. Additionally, we want to be able to match ADL calls as quickly as possible, which means avoiding computing the answer on the fly.
This patch changes `CallExpr` to store whether it's callee was found using ADL. It does not change the size of any AST nodes.
Reviewers: fowles, rsmith, klimek, shafik
Reviewed By: rsmith
Subscribers: aaron.ballman, riccibruno, calabrese, titus, cfe-commits
Differential Revision: https://reviews.llvm.org/D55534
llvm-svn: 348977
CallExpr::setNumArgs is the only thing that prevents storing the arguments
in a trailing array. There is only 3 places in Sema where setNumArgs is called.
D54900 dealt with one of them.
This patch remove the other two calls to setNumArgs in ConvertArgumentsForCall.
To do this we do the following changes:
1.) Replace the first call to setNumArgs by an assertion since we are moving the
responsability to allocate enough space for the arguments from
Sema::ConvertArgumentsForCall to its callers
(which are Sema::BuildCallToMemberFunction, and Sema::BuildResolvedCallExpr).
2.) Add a new member function CallExpr::shrinkNumArgs, which can only be used
to drop arguments and then replace the second call to setNumArgs by
shrinkNumArgs.
3.) Add a new defaulted parameter MinNumArgs to CallExpr and its derived
classes which specifies a minimum number of argument slots to allocate.
The actual number of arguments slots allocated will be
max(number of args, MinNumArgs) with the extra args nulled. Note that
after the creation of the call expression all of the arguments will be
non-null. It is just during the creation of the call expression that some of
the last arguments can be temporarily null, until filled by default arguments.
4.) Update Sema::BuildCallToMemberFunction by passing the number of parameters
in the function prototype to the constructor of CXXMemberCallExpr. Here the
change is pretty straightforward.
5.) Update Sema::BuildResolvedCallExpr. Here the change is more complicated
since the type-checking for the function type was done after the creation of
the call expression. We need to move this before the creation of the call
expression, and then pass the number of parameters in the function prototype
(if any) to the constructor of the call expression.
6.) Update the deserialization of CallExpr and its derived classes.
Differential Revision: https://reviews.llvm.org/D54902
Reviewed By: aaron.ballman
llvm-svn: 348145
It seems the two failing tests can be simply fixed after r348037
Fix 3 cases in Analysis/builtin-functions.cpp
Delete the bad CodeGen/builtin-constant-p.c for now
llvm-svn: 348053
Kept the "indirect_builtin_constant_p" test case in test/SemaCXX/constant-expression-cxx1y.cpp
while we are investigating why the following snippet fails:
extern char extern_var;
struct { int a; } a = {__builtin_constant_p(extern_var)};
llvm-svn: 348039
This was reverted in r347656 due to me thinking it caused a miscompile of
Chromium. Turns out it was the Chromium code that was broken.
llvm-svn: 347756
This caused a miscompile in Chrome (see crbug.com/908372) that's
illustrated by this small reduction:
static bool f(int *a, int *b) {
return !__builtin_constant_p(b - a) || (!(b - a));
}
int arr[] = {1,2,3};
bool g() {
return f(arr, arr + 3);
}
$ clang -O2 -S -emit-llvm a.cc -o -
g() should return true, but after r347417 it became false for some reason.
This also reverts the follow-up commits.
r347417:
> Re-Reinstate 347294 with a fix for the failures.
>
> Don't try to emit a scalar expression for a non-scalar argument to
> __builtin_constant_p().
>
> Third time's a charm!
r347446:
> The result of is.constant() is unsigned.
r347480:
> A __builtin_constant_p() returns 0 with a function type.
r347512:
> isEvaluatable() implies a constant context.
>
> Assume that we're in a constant context if we're asking if the expression can
> be compiled into a constant initializer. This fixes the issue where a
> __builtin_constant_p() in a compound literal was diagnosed as not being
> constant, even though it's always possible to convert the builtin into a
> constant.
r347531:
> A "constexpr" is evaluated in a constant context. Make sure this is reflected
> if a __builtin_constant_p() is a part of a constexpr.
llvm-svn: 347656
Use the newly available space in the bit-fields of Stmt
and store the expressions in a trailing array. This saves
2 pointer per ParenListExpr.
Differential Revision: https://reviews.llvm.org/D54675
Reviewed By: rjmccall
llvm-svn: 347320
Summary:
A __builtin_constant_p may end up with a constant after inlining. Use
the is.constant intrinsic if it's a variable that's in a context where
it may resolve to a constant, e.g., an argument to a function after
inlining.
Reviewers: rsmith, shafik
Subscribers: jfb, kristina, cfe-commits, nickdesaulniers, jyknight
Differential Revision: https://reviews.llvm.org/D54355
llvm-svn: 347294