We generally want to use uint64_t instead of uintX_t if the 64-bit
type works for both 32-bit and 64-bit because it is simpler than
the variable-size type.
llvm-svn: 300293
Previously we silently produced broken output for R_386_GOT32X/R_386_GOT32
relocations if they were used to compute the address of the symbol’s global
offset table entry without base register when position-independent code is disabled.
Situation happened because of recent ABI changes. Released ABI mentions that
R_386_GOT32X can be calculated in a two different ways (so we did not follow ABI here
before this patch), but draft ABI also mentions R_386_GOT32 relocation here.
We should use the same calculations for both relocations.
Problem is that we always calculated them as G + A - GOT (offset from end of GOT),
but for case when PIC is disabled, according to i386 ABI calculation should be G + A,
what should produce just an address in GOT finally.
ABI: https://github.com/hjl-tools/x86-psABI/wiki/intel386-psABI-draft.pdf (p36, p60).
llvm-svn: 299812
Previously, undefined symbol errors are one line like this
and wasn't easy to read.
/ssd/clang/bin/ld.lld: error: /ssd/llvm-project/lld/ELF/Writer.cpp:207: undefined symbol 'lld:🧝:EhFrameSection<llvm::object::ELFType<(llvm::support::endianness)0, true> >::addSection(lld:🧝:InputSectionBase*)'
This patch make it more structured like this.
bin/ld.lld: error: undefined symbol: lld:🧝:EhFrameSection<llvm::object::ELFType<(llvm::support::endianness)0, true>
>>> Referenced by Writer.cpp:207 (/ssd/llvm-project/lld/ELF/Writer.cpp:207)
>>> Writer.cpp.o in archive lib/liblldELF.a
Discussion thread:
http://lists.llvm.org/pipermail/llvm-dev/2017-March/111459.html
Differential Revision: https://reviews.llvm.org/D31481
llvm-svn: 299097
This is a shorthand for Config->Wordsize == 8. So this is not strictly
necessary but seems handy. "Is 64 bit?" is easier to read than "Is
wordsize 8 byte?"
llvm-svn: 298463
The patch introduces two new relocations expressions R_MIPS_GOT_GP and
R_MIPS_GOT_GP_PC. The first one represents a current value of `_gp`
pointer and used to calculate relocations against the `__gnu_local_gp`
symbol. The second one represents the offset between the beginning of
the function and the `_gp` pointer's value.
There are two motivations for introducing new expressions:
- It's better to keep all non-trivial relocation calculations in the
single place - `getRelocTargetVA` function.
- Relocations against both `_gp_disp` and `__gnu_local_gp` symbols
depend on the `_gp` value. It's a magical value points to the "middle"
of GOT. Now all relocations use a common `_gp` value. But in fact,
under some conditions each input file might require its own `_gp`
value. I'm going to implement it in the future patches. So it's
better to make `MipsGotSection` responsible for calculation of
the `_gp` value.
llvm-svn: 298306
We had a few Config member functions that returns configuration values.
For example, we had is64() which returns true if the target is 64-bit.
The return values of these functions are constant and never change.
This patch is to compute them only once to make it clear that they'll
never change.
llvm-svn: 298168
Synthetic sections don't belong to any input file, but still they
are input sections. Whenever problem occurs with relocations in
these sections lld crashes in error reporting, trying to print
input file name.
Differential revision: https://reviews.llvm.org/D30889
llvm-svn: 297711
With this we have a single section hierarchy. It is a bit less code,
but the main advantage will be in a future patch being able to handle
foo = symbol_in_obj;
in a linker script. Currently that fails since we try to find the
output section of symbol_in_obj. With this we should be able to just
return an InputSection from the expression.
llvm-svn: 297313
The list of all input sections was defined in SymbolTable class for a
historical reason. The list itself is not a template. However, because
SymbolTable class is a template, we needed to pass around ELFT to access
the list. This patch moves the list out of the class so that it doesn't
need ELFT.
llvm-svn: 296309
With this we complete the transition out of special output sections,
and with the previous patches it should be possible to merge
OutputSectionBase and OuputSection.
llvm-svn: 296023
With the current design an InputSection is basically anything that
goes directly in a OutputSection. That includes plain input section
but also synthetic sections, so this should probably not be a
template.
llvm-svn: 295993
We shouldn't report an error for R_*_NONE relocs since we're emitting
them when writing relocations to discarded sections.
Differential Revision: https://reviews.llvm.org/D30279
llvm-svn: 295936
In the target dependent code we already always return a int64_t. In
the target independent code we carefully use uintX_t, which has the
same result given 2 complement rules.
This just simplifies the code to use int64_t everywhere.
llvm-svn: 295263
This is a really horrible case. If a .eh_frame points to a discarded
section, it is not clear what is the correct thing to do.
It looks like ld.bfd discards the entire .eh_frame content and gold
discards the second relocation, leaving one frame with an fde that
refers to a bogus location. This is similar to what gold does.
llvm-svn: 295133
This reverts commit r295102.
In the link of seabios the assumption seems to be that the section has
an actual address, so this is not sufficient. Changing the assembly
code to add a "a" flag seems like the correct thing to do instead of
extending this hack.
Sorry about the noise.
Original message:
Relax the restriction on what relocations can be in a non-alloc section.
The main thing that they can't have is relocations that require the
creation of gots or plt. For now also accept R_PC.
Found while linking seabios.
llvm-svn: 295130
The main thing that they can't have is relocations that require the
creation of gots or plt. For now also accept R_PC.
Found while linking seabios.
llvm-svn: 295102
Unfortunately some consumers of our .o files produced with -r expect
only one section symbol per section. That is true of at least of go's
own linker.
Combining them is a somewhat convoluted process. We have to create a
symbol for every section since we don't know which ones will be
needed. The relocation sections also have to be written first to
handle the Elf_Rel addend.
I did consider a completely different approach:
We could remove the -r special case of relocation sections when
reading. We would instead have a copyRelocs function that is used
instead of scanRelocs. It would create a DynamicReloc for each
relocation and a RelocationSection for each input relocation section.
A complication of such change is that DynamicReloc would have to take
a section index and a input section instead of a symbol since with
-emit-relocs some DynamicReloc would hold relocations referring to the
dynamic symbol table and other to the static symbol table.
That would be a pretty big change, and if we do it it is probably
better to do it as a refactoring.
llvm-svn: 294816