In Debug builds, VerifyDiagnosticConsumer checks any files with diagnostics
to make sure we got the chance to parse them for directives (expected-warning
and friends). This check previously relied on every parsed file having a
FileEntry, which broke the cling interpreter's test suite.
This commit changes the extra debug checking to mark a file as unparsed
as soon as we see a diagnostic from that file. At the very end, any files
that are still marked as unparsed are checked for directives, and a fatal
error is emitted (as before) if we find out that there were directives we
missed. -verify directives should always live in actual parsed files, not
in PCH or AST files.
Patch by Andy Gibbs, with slight modifications by me.
llvm-svn: 162171
nested names as id-expressions, using the annot_primary_expr annotation, where
possible. This removes some redundant lookups, and also allows us to
typo-correct within tentative parsing, and to carry on disambiguating past an
identifier which we can determine will fail lookup as both a type and as a
non-type, allowing us to disambiguate more declarations (and thus offer
improved error recovery for such cases).
This also introduces to the parser the notion of a tentatively-declared name,
which is an identifier which we *might* have seen a declaration for in a
tentative parse (but only if we end up disambiguating the tokens as a
declaration). This is necessary to correctly disambiguate cases where a
variable is used within its own initializer.
llvm-svn: 162159
Our current handling of 'throw' is all CFG-based: it jumps to a 'catch' block
if there is one and the function exit block if not. But this doesn't really
get the right behavior when a function is inlined: execution will continue on
the caller's side, which is always the wrong thing to do.
Even within a single function, 'throw' completely skips any destructors that
are to be run. This is essentially the same problem as @finally -- a CFGBlock
that can have multiple entry points, whose exit points depend on whether it
was entered normally or exceptionally.
Representing 'throw' as a sink matches our current (non-)handling of @throw.
It's not a perfect solution, but it's better than continuing analysis in an
inconsistent or even impossible state.
<rdar://problem/12113713>
llvm-svn: 162157
The CFG approximates @throw as a return statement, but that's not good
enough in inlined functions. Moreover, since Objective-C exceptions are
usually considered fatal, we should be suppressing leak warnings like we
do for calls to noreturn functions (like abort()).
The comments indicate that we were probably intending to do this all along;
it may have been inadvertantly changed during a refactor at one point.
llvm-svn: 162156
This was once an adapter class between callbacks that had CheckerContexts
and those that don't, but for a while now it's essentially just been a
wrapper around a ProgramPointTag. We can just pass the tag around instead.
No functionality change.
llvm-svn: 162155
specifier is unsed in a declaration; as it may not make the symbol
local to linkage unit as intended. Suggest using "hidden" visibility
attribute instead. // rdar://7703982
llvm-svn: 162138
declaration context, check whether the primary context---not the
current context---has any external visible declarations. Fixes
PR13616.
llvm-svn: 162083
both a waste of time, and prone to crash due to the use of the
error-recovery path in parser. Fixes <rdar://problem/12103608>, which
has been driving me nuts.
llvm-svn: 162081
reference, so &* on an empty WeakVH binds a reference to a dereferenced null
pointer. So don't do that; we have a perfectly good implicit conversion to
Value*.
llvm-svn: 162079
This attempts to be a higher-level description of our inlining heuristics
and decision trees than the source, where the work is spread out between
ExprEngine (mostly in ExprEngineCallAndReturn.cpp) and CallEvent, with a
few other classes participating as well.
llvm-svn: 162073
elaborated type specifier in template instantiation: such a specifier is always
valid because it must be specified within the definition of the type.
llvm-svn: 162068
function arguments and arguments for variadic functions are of a particular
type which is determined by some other argument to the same function call.
Usecases include:
* MPI library implementations, where these attributes enable checking that
buffer type matches the passed MPI_Datatype;
* for HDF5 library there is a similar usecase as MPI;
* checking types of variadic functions' arguments for functions like
fcntl() and ioctl().
llvm-svn: 162067