-enable-si-insert-waitcnts=1 becomes the default
-enable-si-insert-waitcnts=0 to use old pass
Differential Revision: https://reviews.llvm.org/D33730
llvm-svn: 304551
Currently the default C calling convention functions are treated
the same as compute kernels. Make this explicit so the default
calling convention can be changed to a non-kernel.
Converted with perl -pi -e 's/define void/define amdgpu_kernel void/'
on the relevant test directories (and undoing in one place that actually
wanted a non-kernel).
llvm-svn: 298444
This allows us to ensure that 0 is never a valid pointer
to a user object, and ensures that the offset is always legal
without needing a register to access it. This comes at the cost
of usable offsets and wasted stack space.
llvm-svn: 295877
Before frame offsets are calculated, try to eliminate the
frame indexes used by SGPR spills. Then we can delete them
after.
I think for now we can be sure that no other instruction
will be re-using the same frame indexes. It should be easy
to notice if this assumption ever breaks since everything
asserts if it tries to use a dead frame index later.
The unused emergency stack slot seems to still be left behind,
so an additional 4 bytes is still wasted.
llvm-svn: 295753
The size and offset were wrong. The size of the object was
being used for the size of the access, when here it is really
being split into 4-byte accesses. The underlying object size
is set in the MachinePointerInfo, which also didn't have the
offset set.
llvm-svn: 287806
Summary:
1. Don't try to copy values to and from the same register class.
2. Replace copies with of registers with immediate values with v_mov/s_mov
instructions.
The main purpose of this change is to make MachineSink do a better job of
determining when it is beneficial to split a critical edge, since the pass
assumes that copies will become move instructions.
This prevents a regression in uniform-cfg.ll if we enable critical edge
splitting for AMDGPU.
Reviewers: arsenm
Subscribers: arsenm, kzhuravl, llvm-commits
Differential Revision: https://reviews.llvm.org/D23408
llvm-svn: 287131
This is the conservatively correct way because it's easy to
move or replace a scalar immediate. This was incorrect in the case
when the register class wasn't known from the static instruction
definition, but still needed to be an SGPR. The main example of this
is inlineasm has an SGPR constraint.
Also start verifying the register classes of inlineasm operands.
llvm-svn: 285762
Because everything live is spilled at the end of a
block by fast regalloc, assume this will happen and
avoid the copies of the resource descriptor.
llvm-svn: 284119
For some reason there are both of these available, except
for scalar 64-bit compares which only has u64. I'm not sure
why there are both (I'm guessing it's for the one bit inputs we
don't use), but for consistency always using the
unsigned one.
llvm-svn: 282832
Fixes to allow spilling all registers at the end of the block
work with exec modifications. Don't emit s_and_saveexec_b64 for
if lowering, and instead emit copies. Mark control flow mask
instructions as terminators to get correct spill code placement
with fast regalloc, and then have a separate optimization pass
form the saveexec.
This should work if SGPRs are spilled to VGPRs, but
will likely fail in the case that an SGPR spills to memory
and no workitem takes a divergent branch.
llvm-svn: 282667