It is OK for an alias live range to overlap if there is a copy to or from the
physical register. CoalescerPair can work out if the copy is coalescable
independently of the alias.
This means that we can join with the actual destination interval instead of
using the getOrigDstReg() hack. It is no longer necessary to merge clobber
ranges into subregisters.
llvm-svn: 107695
This way *only* debug sections can be discarded, but not the opposite. Seems like the copy-and-pasto from ELF code, since there it contains the reverse flag ('alloc').
llvm-svn: 107658
The COPY instruction is intended to replace the target specific copy
instructions for virtual registers as well as the EXTRACT_SUBREG and
INSERT_SUBREG instructions in MachineFunctions. It won't we used in a selection
DAG.
COPY is lowered to native register copies by LowerSubregs.
llvm-svn: 107529
new basic blocks, and if used as a function argument, that can cause call frame
setup / destroy pairs to be split across a basic block boundary. That prevents
us from doing a simple assertion to check that the pairs match and alloc/
dealloc the same amount of space. Modify the assertion to only check the
amount allocated when there are matching pairs in the same basic block.
rdar://8022442
llvm-svn: 107517
- X86 unfolding should check if the instructions being unfolded has memoperands.
If there is no memoperands, then it must assume conservative alignment. If this
would introduce an expensive sse unaligned load / store, then unfoldMemoryOperand
etc. should not unfold the instruction.
llvm-svn: 107509
PrologEpilog code, and use it to determine whether
the asm forces stack alignment or not. gcc consistently
does not do this for GCC-style asms; Apple gcc inconsistently
sometimes does it for asm blocks. There is no
convenient place to put a bit in either the SDNode or
the MachineInstr form, so I've added an extra operand
to each; unlovely, but it does allow for expansion for
more bits, should we need it. PR 5125. Some
existing testcases are affected.
The operand lists of the SDNode and MachineInstr forms
are indexed with awesome mnemonics, like "2"; I may
fix this someday, but not now. I'm not making it any
worse. If anyone is inspired I think you can find all
the right places from this patch.
llvm-svn: 107506
This allows us to recognize the common case where all uses could be
rematerialized, and no stack slot allocation is necessary.
If some values could be fully rematerialized, remove them from the live range
before allocating a stack slot for the rest.
llvm-svn: 107492
Objective-C metadata types which should be marked as "weak", but which the
linker will remove upon final linkage. However, this linkage isn't specific to
Objective-C.
For example, the "objc_msgSend_fixup_alloc" symbol is defined like this:
.globl l_objc_msgSend_fixup_alloc
.weak_definition l_objc_msgSend_fixup_alloc
.section __DATA, __objc_msgrefs, coalesced
.align 3
l_objc_msgSend_fixup_alloc:
.quad _objc_msgSend_fixup
.quad L_OBJC_METH_VAR_NAME_1
This is different from the "linker_private" linkage type, because it can't have
the metadata defined with ".weak_definition".
Currently only supported on Darwin platforms.
llvm-svn: 107433
LocalRewriter::runOnMachineFunction uses this information to mark dead spill
slots.
This means that InlineSpiller now also works for functions that spill.
llvm-svn: 107302
InlineSpiller inserts loads and spills immediately instead of deferring to
VirtRegMap. This is possible now because SlotIndexes allows instructions to be
inserted and renumbered.
This is work in progress, and is mostly a copy of TrivialSpiller so far. It
works very well for functions that don't require spilling.
llvm-svn: 107227
metadata types which should be marked as "weak", but which the linker will
remove upon final linkage. For example, the "objc_msgSend_fixup_alloc" symbol is
defined like this:
.globl l_objc_msgSend_fixup_alloc
.weak_definition l_objc_msgSend_fixup_alloc
.section __DATA, __objc_msgrefs, coalesced
.align 3
l_objc_msgSend_fixup_alloc:
.quad _objc_msgSend_fixup
.quad L_OBJC_METH_VAR_NAME_1
This is different from the "linker_private" linkage type, because it can't have
the metadata defined with ".weak_definition".
llvm-svn: 107205
A partial redefine needs to be treated like a tied operand, and the register
must be reloaded while processing use operands.
This fixes a bug where partially redefined registers were processed as normal
defs with a reload added. The reload could clobber another use operand if it was
a kill that allowed register reuse.
llvm-svn: 107193
The LowerSubregs pass needs to preserve implicit def operands attached to
EXTRACT_SUBREG instructions when it replaces those instructions with copies.
llvm-svn: 107189
of getPhysicalRegisterRegClass with it.
If we want to make a copy (or estimate its cost), it is better to use the
smallest class as more efficient operations might be possible.
llvm-svn: 107140
There are 2 changes relative to the previous version of the patch:
1) For the "simple" if-conversion case, there's no need to worry about
RemoveExtraEdges not handling an unanalyzable branch. Predicated terminators
are ignored in this context, so RemoveExtraEdges does the right thing.
This might break someday if we ever treat indirect branches (BRIND) as
predicable, but for now, I just removed this part of the patch, because
in the case where we do not add an unconditional branch, we rely on keeping
the fall-through edge to CvtBBI (which is empty after this transformation).
The change relative to the previous patch is:
@@ -1036,10 +1036,6 @@
IterIfcvt = false;
}
- // RemoveExtraEdges won't work if the block has an unanalyzable branch,
- // which is typically the case for IfConvertSimple, so explicitly remove
- // CvtBBI as a successor.
- BBI.BB->removeSuccessor(CvtBBI->BB);
RemoveExtraEdges(BBI);
// Update block info. BB can be iteratively if-converted.
2) My patch exposed a bug in the code for merging the tail of a "diamond",
which had previously never been exercised. The code was simply checking that
the tail had a single predecessor, but there was a case in
MultiSource/Benchmarks/VersaBench/dbms where that single predecessor was
neither edge of the diamond. I added the following change to check for
that:
@@ -1276,7 +1276,18 @@
// tail, add a unconditional branch to it.
if (TailBB) {
BBInfo TailBBI = BBAnalysis[TailBB->getNumber()];
- if (TailBB->pred_size() == 1 && !TailBBI.HasFallThrough) {
+ bool CanMergeTail = !TailBBI.HasFallThrough;
+ // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
+ // check if there are any other predecessors besides those.
+ unsigned NumPreds = TailBB->pred_size();
+ if (NumPreds > 1)
+ CanMergeTail = false;
+ else if (NumPreds == 1 && CanMergeTail) {
+ MachineBasicBlock::pred_iterator PI = TailBB->pred_begin();
+ if (*PI != BBI1->BB && *PI != BBI2->BB)
+ CanMergeTail = false;
+ }
+ if (CanMergeTail) {
MergeBlocks(BBI, TailBBI);
TailBBI.IsDone = true;
} else {
With these fixes, I was able to run all the SingleSource and MultiSource
tests successfully.
llvm-svn: 107110
have to be registers, per gcc documentation. This affects
the logic for determining what "g" should lower to. PR 7393.
A couple of existing testcases are affected.
llvm-svn: 107079
When an instruction has tied operands and physreg defines, we must take extra
care that the tied operands conflict with neither physreg defs nor uses.
The special treatment is given to inline asm and instructions with tied operands
/ early clobbers and physreg defines.
This fixes PR7509.
llvm-svn: 107043
if-conversion. The RemoveExtraEdges function doesn't work for blocks that
end with unanalyzable branches, so in those cases, the "extra" edges must
be explicitly removed. The CopyAndPredicateBlock and MergeBlocks methods
can also avoid copying successor edges due to branches that have already
been removed. The latter case is especially helpful when MergeBlocks is
called for handling "diamond" if-conversions, where otherwise you can end
up with some weird intermediate states in the CFG. Unfortunately I've
been unable to find cases where this cleanup actually makes a significant
difference in the code. There is one test where we manage to remove an
empty block at the end of a function. Radar 6911268.
llvm-svn: 106939
The VNInfo.kills vector was almost unused except for all the code keeping it
updated. The few places using it were easily rewritten to check for interval
ends instead.
The two new methods LiveInterval::killedAt and killedInRange are replacements.
This brings us down to 3 independent data structures tracking kills.
llvm-svn: 106905
for an "i" constraint should get lowered; PR 6309. While
this argument was passed around a lot, this is the only
place it was used, so it goes away from a lot of other
places.
llvm-svn: 106893
are dead, not just the def of this register. I.e., a register could be dead, but
it's subreg isn't.
Testcase to follow with a subsequent patch.
llvm-svn: 106878
and CallInst for getting hold
of the intrinsic's arguments
simplify along the way (at least for me this is much more legible now)
Bill, Baldrick or Anton, please review\!
llvm-svn: 106838
This fixes PR7479 and PR7485. The test cases from those PRs are big, so not
included. However, PR7485 comes from self hosting on FreeBSD, so we will surely
hear about any regression.
llvm-svn: 106811
which don't have a catch-all associated with them not just clean-ups. This fixes
the SingleSource/Benchmarks/Shootout-C++/except.cpp testcase that broke because
of my change r105902.
llvm-svn: 106772
CoalescerPair can determine if a copy can be coalesced, and which register gets
merged away. The old logic in SimpleRegisterCoalescing had evolved into
something a bit too convoluted.
This second attempt fixes some crashes that only occurred Linux.
llvm-svn: 106769
[L]oad, [u]se, [d]ef, or [S]tore slots.
This makes it easier to see if two indices refer to the same instruction,
avoiding mental mod 4 calculations.
llvm-svn: 106766
In this case it is essential that the kill is real because the spiller will
decide to omit a spill if it thinks there is a later kill.
llvm-svn: 106751
when the condition is constant. This optimization shouldn't be
necessary, because codegen shouldn't be able to find dead control
paths that the IR-level optimizer can't find. And it's undesirable,
because it encourages bugpoint to leave "br i1 false" branches
in its output. And it wasn't updating the CFG.
I updated all the tests I could, but some tests are too reduced
and I wasn't able to meaningfully preserve them.
llvm-svn: 106748
CoalescerPair can determine if a copy can be coalesced, and which register gets
merged away. The old logic in SimpleRegisterCoalescing had evolved into
something a bit too convoluted.
llvm-svn: 106701
atomic intrinsics, either because the use locking instructions for the
atomics, or because they perform the locking directly. Add support in the
DAG combiner to fold away the fences.
llvm-svn: 106630
instructions.
This does not affect codegen much because SUBREG_TO_REG is only used by X86 and
X86 does not use the register scavenger, but it prevents verifier errors.
llvm-svn: 106583
Measurements show that it does not speed up coalescing, so there is no reason
the keep the added complexity around.
Also clean out some unused methods and static functions.
llvm-svn: 106548
opportunities. For example, this lets it emit this:
movq (%rax), %rcx
addq %rdx, %rcx
instead of this:
movq %rdx, %rcx
addq (%rax), %rcx
in the case where %rdx has subsequent uses. It's the same number
of instructions, and usually the same encoding size on x86, but
it appears faster, and in general, it may allow better scheduling
for the load.
llvm-svn: 106493
Split the code for materializing a value out of
SelectionDAGBuilder::getValue into a helper function, so that it can
be used in other ways. Add a new getNonRegisterValue function which
uses it, for use in code which doesn't want a CopyFromReg even
when FuncMap.ValueMap already has an entry for it.
llvm-svn: 106422
- This fixed a number of bugs in if-converter, tail merging, and post-allocation
scheduler. If-converter now runs branch folding / tail merging first to
maximize if-conversion opportunities.
- Also changed the t2IT instruction slightly. It now defines the ITSTATE
register which is read by instructions in the IT block.
- Added Thumb2 specific hazard recognizer to ensure the scheduler doesn't
change the instruction ordering in the IT block (since IT mask has been
finalized). It also ensures no other instructions can be scheduled between
instructions in the IT block.
This is not yet enabled.
llvm-svn: 106344
instructions, but it doesn't really understand live ranges, so the first
INSERT_SUBREG uses an implicitly defined register.
Fix it in LiveVariableAnalysis by adding the <undef> flag.
llvm-svn: 106333
entries used by llvm-gcc. *_[U]MIN and such can be added later if needed.
This enables the front ends to simplify handling of the atomic intrinsics by
removing the target-specific decision about which targets can handle the
intrinsics.
llvm-svn: 106321
so when IfConverter::CopyAndPredicateBlock checks to see if it should ignore
an instruction because it is a branch, it should not check if the branch is
predicated.
This case (when IgnoreBr is true) is only relevant from IfConvertTriangle,
where new branches are inserted after the block has been copied and predicated.
If the original branch is not removed, we end up with multiple conditional
branches (possibly conflicting) at the end of the block. Aside from any
immediate errors resulting from that, this confuses the AnalyzeBranch functions
so that the branches are not analyzable. That in turn causes the IfConverter to
think that the "Simple" pattern can be applied, and things go downhill fast
because the "Simple" pattern does _not_ apply if the block can fall through.
This is pretty fragile. If there are other degenerate cases where AnalyzeBranch
fails, but where the block may still fall through, the IfConverter should not
perform its "Simple" if-conversion. But, I don't know how to do that with the
current AnalyzeBranch interface, so for now, the best thing seems to be to
avoid creating branches that AnalyzeBranch cannot handle.
Evan, please review!
llvm-svn: 106291
switch from this:
if (TimePassesIsEnabled) {
NamedRegionTimer T(Name, GroupName);
do_something();
} else {
do_something(); // duplicate the code, this time without a timer!
}
to this:
{
NamedRegionTimer T(Name, GroupName, TimePassesIsEnabled);
do_something();
}
llvm-svn: 106285
addresses a longstanding deficiency noted in many FIXMEs scattered
across all the targets.
This effectively moves the problem up one level, replacing eleven
FIXMEs in the targets with eight FIXMEs in CodeGen, plus one path
through FastISel where we actually supply a DebugLoc, fixing Radar
7421831.
llvm-svn: 106243
for the moment. The implementation of the libcall will follow.
Currently, the llvm-gcc knows when the intrinsics can be correctly handled by
the back end and only generates them in those cases, issuing libcalls directly
otherwise. That's too much coupling. The intrinsics should always be
generated and the back end decide how to handle them, be it with a libcall,
inline code, or whatever. This patch is a step in that direction.
rdar://8097623
llvm-svn: 106227
LiveVariableAnalysis was a bit picky about a register only being redefined once,
but that really isn't necessary.
Here is an example of chained INSERT_SUBREGs that we can handle now:
68 %reg1040<def> = INSERT_SUBREG %reg1040, %reg1028<kill>, 14
register: %reg1040 +[70,134:0)
76 %reg1040<def> = INSERT_SUBREG %reg1040, %reg1029<kill>, 13
register: %reg1040 replace range with [70,78:1) RESULT: %reg1040,0.000000e+00 = [70,78:1)[78,134:0) 0@78-(134) 1@70-(78)
84 %reg1040<def> = INSERT_SUBREG %reg1040, %reg1030<kill>, 12
register: %reg1040 replace range with [78,86:2) RESULT: %reg1040,0.000000e+00 = [70,78:1)[78,86:2)[86,134:0) 0@86-(134) 1@70-(78) 2@78-(86)
92 %reg1040<def> = INSERT_SUBREG %reg1040, %reg1031<kill>, 11
register: %reg1040 replace range with [86,94:3) RESULT: %reg1040,0.000000e+00 = [70,78:1)[78,86:2)[86,94:3)[94,134:0) 0@94-(134) 1@70-(78) 2@78-(86) 3@86-(94)
rdar://problem/8096390
llvm-svn: 106152
will conflict with another live range. The place which creates this scenerio is
the code in X86 that lowers a select instruction by splitting the MBBs. This
eliminates the need to check from the bottom up in an MBB for live pregs.
llvm-svn: 106066
SimpleRegisterCoalescing::JoinIntervals() uses CoalescerPair to determine if a
copy is coalescable, and in very rare cases it can return true where LHS is not
live - the coalescable copy can come from an alias of the physreg in LHS.
llvm-svn: 106021
combined to an insert_subreg, i.e., where the destination register is larger
than the source. We need to check that the subregs can be composed for that
case in a symmetrical way to the case when the destination is smaller.
llvm-svn: 106004
Early clobbers defining a virtual register were first alocated to a physreg and
then processed as a physreg EC, spilling the virtreg.
This fixes PR7382.
llvm-svn: 105998
Given a copy instruction, CoalescerPair can determine which registers to
coalesce in order to eliminate the copy. It deals with all the subreg fun to
determine a tuple (DstReg, SrcReg, SubIdx) such that:
- SrcReg is a virtual register that will disappear after coalescing.
- DstReg is a virtual or physical register whose live range will be extended.
- SubIdx is 0 when DstReg is a physical register.
- SrcReg can be joined with DstReg:SubIdx.
CoalescerPair::isCoalescable() determines if another copy instruction is
compatible with the same tuple. This fixes some NEON miscompilations where
shuffles are getting coalesced as if they were copies.
The CoalescerPair class will replace a lot of the spaghetti logic in JoinCopy
later.
llvm-svn: 105997
replacing the overly conservative checks that I had introduced recently to
deal with correctness issues. This makes a pretty noticable difference
in our testcases where reg_sequences are used. I've updated one test to
check that we no longer emit the unnecessary subreg moves.
llvm-svn: 105991
clean-up to a catch-all after inlining, take into account that there could be
filter IDs as well. The presence of filters don't mean that the selector catches
anything. It's just metadata information.
llvm-svn: 105872
This is a bit of a hack to make inline asm look more like call instructions.
It would be better to produce correct dead flags during isel.
llvm-svn: 105749
%reg1025 = <sext> %reg1024
...
%reg1026 = SUBREG_TO_REG 0, %reg1024, 4
into this:
%reg1025 = <sext> %reg1024
...
%reg1027 = EXTRACT_SUBREG %reg1025, 4
%reg1026 = SUBREG_TO_REG 0, %reg1027, 4
The problem here is that SUBREG_TO_REG is there to assert that an implicit zext
occurs. It doesn't insert a zext instruction. If we allow the EXTRACT_SUBREG
here, it will give us the value after the <sext>, not the original value of
%reg1024 before <sext>.
llvm-svn: 105741
register allocation.
Process all of the clobber lists at the end of the function, marking the
registers as used in MachineRegisterInfo.
This is necessary in case the calls clobber callee-saved registers (sic).
llvm-svn: 105473
replace an OpA with a widened OpB, it is possible to get new uses of OpA due to CSE
when recursively updating nodes. Since OpA has been processed, the new uses are
not examined again. The patch checks if this occurred and it it did, updates the
new uses of OpA to use OpB.
llvm-svn: 105453
Check that all the instructions are in the same basic block, that the
EXTRACT_SUBREGs write to the same subregs that are being extracted, and that
the source and destination registers are in the same regclass. Some of
these constraints can be relaxed with a bit more work. Jakob suggested
that the loop that checks for subregs when NewSubIdx != 0 should use the
"nodbg" iterator, so I made that change here, too.
llvm-svn: 105437
registers it defines then interfere with an existing preg live range.
For instance, if we had something like these machine instructions:
BB#0
... = imul ... EFLAGS<imp-def,dead>
test ..., EFLAGS<imp-def>
jcc BB#2 EFLAGS<imp-use>
BB#1
... ; fallthrough to BB#2
BB#2
... ; No code that defines EFLAGS
jcc ... EFLAGS<imp-use>
Machine sink will come along, see that imul implicitly defines EFLAGS, but
because it's "dead", it assumes that it can move imul into BB#2. But when it
does, imul's "dead" imp-def of EFLAGS is raised from the dead (a zombie) and
messes up the condition code for the jump (and pretty much anything else which
relies upon it being correct).
The solution is to know which pregs are live going into a basic block. However,
that information isn't calculated at this point. Nor does the LiveVariables pass
take into account non-allocatable physical registers. In lieu of this, we do a
*very* conservative pass through the basic block to determine if a preg is live
coming out of it.
llvm-svn: 105387
expansion is the same as that used by LegalizeDAG.
The resulting code sucks in terms of performance/codesize on x86-32 for a
64-bit operation; I haven't looked into whether different expansions might be
better in general.
llvm-svn: 105378
spills and reloads.
This means that a partial define of a register causes a reload so the other
parts of the register are preserved.
The reload can be prevented by adding an <imp-def> operand for the full
register. This is already done by the coalescer and live interval analysis where
relevant.
llvm-svn: 105369
register updates.
These operands tell the spiller that the other parts of the partially defined
register are don't-care, and a reload is not necessary.
llvm-svn: 105361
instruction defines subregisters.
Any existing subreg indices on the original instruction are preserved or
composed with the new subreg index.
Also substitute multiple operands mentioning the original register by using the
new MachineInstr::substituteRegister() function. This is necessary because there
will soon be <imp-def> operands added to non read-modify-write partial
definitions. This instruction:
%reg1234:foo = FLAP %reg1234<imp-def>
will reMaterialize(%reg3333, bar) like this:
%reg3333:bar-foo = FLAP %reg333:bar<imp-def>
Finally, replace the TargetRegisterInfo pointer argument with a reference to
indicate that it cannot be NULL.
llvm-svn: 105358