max-time.py:
Windows does not have a native `sleep` command, use `time.sleep()` in
Python instead.
max-failures.py:
The max-failure test reused the shtest-shell test inputs instead of
defining its own "test domain". However, the output of this
shtest-shell "test domain" is slightly different on Windows, which now
bites us since we made the max-failures test stricter. Let's define
our own "max failures" test domain.
This probably isn't ideal - the error was being printed specifically
inline with the dumping that was more legible - but then the error
wasn't reported to stderr and didn't produce a non-zero exit code.
Probably the error message could be improved by adding more context now
that it isn't printed in-situ of the DIE dumping as much.
Revision a1c05fe <https://reviews.llvm.org/rGa1c05fe20f3def1f1be9f50d2adefc6b6f1578ad>
removed bitcast from the list of problematic transformations, however:
%97 = fptrunc ppc_fp128 %2 to double // we need to check ppc_fp128 here to prevent the transformation
%98 = bitcast double %97 to i64 // a1c05fe checks ppc_fp128 at here
%99 = icmp slt i64 %98, 0
%100 = zext i1 %99 to i8
store i8 %100, i8* %7, align 1
so this patch does that. I'm also disabling it in the presence of extend just in case.
I verified separately that the hash of -std::infinity and std::infinity don't match now.
Differential Revision: https://reviews.llvm.org/D77911
Summary:
Don't attempt to analyze the decomposed GEP for scalable type.
GEP index scale is not compile-time constant for scalable type.
Be conservative, return MayAlias.
Explicitly call TypeSize::getFixedSize() to assert on places where
scalable type doesn't make sense.
Add unit tests to check functionality of -basicaa for scalable type.
This patch is needed for D76944.
Reviewers: sdesmalen, efriedma, spatel, bjope, ctetreau
Reviewed By: efriedma
Subscribers: tschuett, hiraditya, rkruppe, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77828
The instrumentation unit tests' current implementation uses global
variables to track constructor calls for the instrumented classes during
replay. This is suboptimal because it indirectly relies on how the
reproducer instrumentation is implemented. I found out when adding
support for passive replay and the test broke because we made an extra
(temporary) copy of the instrumented objects.
Additionally, the old approach wasn't very self-explanatory. It took me
a bit of time to understand why we were expecting the number of objects
in the test.
This patch rewrites the test and uses the index-to-object-mapping to
verify the objects created during replay. You can now specify the
expected objects, in order, and whether they should be valid or not. I
find that it makes the tests much easier to understand. More
importantly, this approach is resilient to implementation detail changes
in the instrumentation.
Summary: We discovered that the compiler may chose not to inline the operator=, which leads to an expensive extra stack frame. This change makes __assign_no_alias always tail called.
Reviewers: EricWF, #libc!
Subscribers: libcxx-commits
Tags: #libc
Differential Revision: https://reviews.llvm.org/D77913
Summary:
This allows us to test each backend pass under the presence
of debug info using pre-existing tests. The tests should not
fail as a result of this so long as it's true that debug info
does not affect CodeGen.
In practice, a few tests are sensitive to this:
* Tests that check the pass structure (e.g. O0-pipeline.ll)
* Tests that check --debug output. Specifically instruction
dumps containing MMO's (e.g. prelegalizercombiner-extends.ll)
* Tests that contain debugify metadata as mir-strip-debug will
remove it (e.g. fastisel-debugvalue-undef.ll)
* Tests with partial debug info (e.g.
patchable-function-entry-empty.mir had debug info but no
!llvm.dbg.cu)
* Tests that check optimization remarks overly strictly (e.g.
prologue-epilogue-remarks.mir)
* Tests that would inject the pass in an unsafe region (e.g.
seqpairspill.mir would inject between register alloc and
virt reg rewriter)
In all cases, the checks can either be updated or
--debugify-and-strip-all-safe=0 can be used to avoid being
affected by something like llvm-lit -Dllc='llc --debugify-and-strip-all-safe'
I tested this without the lost debug locations verifier to
confirm that AArch64 behaviour is unaffected (with the fixes
in this patch) and with it to confirm it finds the problems
without the additional RUN lines we had before.
Depends on D77886, D77887, D77747
Reviewers: aprantl, vsk, bogner
Subscribers: qcolombet, kristof.beyls, hiraditya, danielkiss, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77888
Fixup for cbe42a9d5f. Increase values for testing the overall lit
timeout (--max-time) which wasn't enough for the test to complete on
very slow build bots.
Summary:
The inline history is associated with a call site. There are two locations
we fetch inline history. In one, we fetch it together with the call
site. In the other, we initialize it under certain conditions, use it
later under same conditions (different if check), and otherwise is
uninitialized. Although currently there is no uninitialized use, the
code is more challenging to maintain correctly, than if the value were
always initialized.
Changed to the upfront initialization pattern already present in this
file.
Reviewers: davidxl, dblaikie
Subscribers: eraman, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77877
Summary:
A few tests start out with debug info and expect it to reach
the output. For these tests we shouldn't strip the debug info
Reviewers: aprantl, vsk, bogner
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77886
Track and print the number of skipped tests. Skipped tests are tests
that should have been executed but weren't due to:
* user interrupt [Ctrl+C]
* --max-time (overall lit timeout)
* --max-failures
This is part of a larger effort to ensure that all discovered tests are
properly accounted for.
Add test for overall lit timeout feature (`--max-time` option) to
observe skipped tests. Extend test for `--max-failures` option.
Reviewed By: jdenny
Differential Revision: https://reviews.llvm.org/D77819
Summary:
Remove usages of asserting vector getters in Type in preparation for the
VectorType refactor. The existence of these functions complicates the
refactor while adding little value.
Reviewers: stoklund, sdesmalen, efriedma
Reviewed By: sdesmalen
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77272
Summary: With users registering their own dependencies, duplicate pass registration becomes more and more common. This revision relaxes that pass registration be unique. This is safe to assume given that we key on the passID, which is guaranteed to be unique per pass class.
Differential Revision: https://reviews.llvm.org/D77909
The libc++ test suite has a lot of old Lit features used to XFAIL tests
and mark them as UNSUPPORTED. Many of them are to workaround problems on
old compilers or old platforms. As time goes by, it is good to go and
clean those up to simplify the configuration of the test suite, and also
to reflect the testing reality. It's not useful to have markup that gives
the impression that e.g. clang-3.3 is supported, when we don't really
test on it anymore (and hence several new tests probably don't have the
necessary markup on them).
Summary:
Remove usages of asserting vector getters in Type in preparation for the
VectorType refactor. The existence of these functions complicates the
refactor while adding little value.
Reviewers: dexonsmith, sdesmalen, efriedma
Reviewed By: efriedma
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77276
Summary: This revision adds support for specifying operands or results as "optional". This is a special case of variadic where the number of elements is either 0 or 1. Operands and results of this kind will have accessors generated using Value instead of the range types, making it more natural to interface with.
Differential Revision: https://reviews.llvm.org/D77863
Summary:
Remove usages of asserting vector getters in Type in preparation for the
VectorType refactor. The existence of these functions complicates the
refactor while adding little value.
Reviewers: dexonsmith, sdesmalen, efriedma
Reviewed By: sdesmalen
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77274
Summary:
At the moment, any changes we make to the passes that can be
injected before/after others (e.g. -verify-machineinstrs and
-print-after-all) have to be duplicated in both
TargetPassConfig (for normal execution, -start-before/
-stop-before/etc) and llc (for -run-pass). Unify this pass
injection into addMachinePrePass/addMachinePostPass that both
TargetPassConfig and llc can use.
Reviewers: vsk, aprantl, bogner
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77887
Summary:
Remove usages of asserting vector getters in Type in preparation for the
VectorType refactor. The existence of these functions complicates the
refactor while adding little value.
Reviewers: rriddle, efriedma, sdesmalen
Reviewed By: sdesmalen
Subscribers: frgossen, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, Joonsoo, grosul1, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77258
Summary: This avoids adding any additional global constructors, like cl::opt. There is a temporary exception on IR/, which has a few cl::opts that require a bit of plumbing to remove.
Differential Revision: https://reviews.llvm.org/D77824
Summary:
The string in the location is used to provide metadata for the fused location
or create a NamedLoc. This allows tagging individual locations to convey
additional rewrite information.
Differential Revision: https://reviews.llvm.org/D77840
Summary:
Refactor LiveRangeCalc such that it is now split into two classes
The objective is to split all the "register specific" logic away
from LiveRangeCalc.
The two new classes created are:
- LiveRangeCalc - is meant as a generic class to compute and modify
live ranges in a generic way. This class should deal only with
SlotIndices and VNInfo objects.
- LiveIntervalCals - is meant to be equivalent to the old LiveRangeCalc.
It computes the liveness virtual registers tracked by a LiveInterval
object.
With this refactoring LiveRangeCalc can be used to implement tracking of
liveness of LiveRanges that represent other things than just registers.
Subscribers: MatzeB, qcolombet, mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76584
Summary:
This revision adds a tool that generates the ODS and C++ implementation for "named" Linalg ops according to the [RFC discussion](https://llvm.discourse.group/t/rfc-declarative-named-ops-in-the-linalg-dialect/745).
While the mechanisms and language aspects are by no means set in stone, this revision allows connecting the pieces end-to-end from a mathematical-like specification.
Some implementation details and short-term decisions taken for the purpose of bootstrapping and that are not set in stone include:
1. using a "[Tensor Comprehension](https://arxiv.org/abs/1802.04730)-inspired" syntax
2. implicit and eager discovery of dims and symbols when parsing
3. using EDSC ops to specify the computation (e.g. std_addf, std_mul_f, ...)
A followup revision will connect this tool to tablegen mechanisms and allow the emission of named Linalg ops that automatically lower to various loop forms and run end to end.
For the following "Tensor Comprehension-inspired" string:
```
def batch_matmul(A: f32(Batch, M, K), B: f32(K, N)) -> (C: f32(Batch, M, N)) {
C(b, m, n) = std_addf<k>(std_mulf(A(b, m, k), B(k, n)));
}
```
With -gen-ods-decl=1, this emits (modulo formatting):
```
def batch_matmulOp : LinalgNamedStructured_Op<"batch_matmul", [
NInputs<2>,
NOutputs<1>,
NamedStructuredOpTraits]> {
let arguments = (ins Variadic<LinalgOperand>:$views);
let results = (outs Variadic<AnyRankedTensor>:$output_tensors);
let extraClassDeclaration = [{
llvm::Optional<SmallVector<StringRef, 8>> referenceIterators();
llvm::Optional<SmallVector<AffineMap, 8>> referenceIndexingMaps();
void regionBuilder(ArrayRef<BlockArgument> args);
}];
let hasFolder = 1;
}
```
With -gen-ods-impl, this emits (modulo formatting):
```
llvm::Optional<SmallVector<StringRef, 8>> batch_matmul::referenceIterators() {
return SmallVector<StringRef, 8>{ getParallelIteratorTypeName(),
getParallelIteratorTypeName(),
getParallelIteratorTypeName(),
getReductionIteratorTypeName() };
}
llvm::Optional<SmallVector<AffineMap, 8>> batch_matmul::referenceIndexingMaps()
{
MLIRContext *context = getContext();
AffineExpr d0, d1, d2, d3;
bindDims(context, d0, d1, d2, d3);
return SmallVector<AffineMap, 8>{
AffineMap::get(4, 0, {d0, d1, d3}),
AffineMap::get(4, 0, {d3, d2}),
AffineMap::get(4, 0, {d0, d1, d2}) };
}
void batch_matmul::regionBuilder(ArrayRef<BlockArgument> args) {
using namespace edsc;
using namespace intrinsics;
ValueHandle _0(args[0]), _1(args[1]), _2(args[2]);
ValueHandle _4 = std_mulf(_0, _1);
ValueHandle _5 = std_addf(_2, _4);
(linalg_yield(ValueRange{ _5 }));
}
```
Differential Revision: https://reviews.llvm.org/D77067
Summary:
This commit adds two command-line options to clang.
These options let the user decide which functions will receive SanitizerCoverage instrumentation.
This is most useful in the libFuzzer use case, where it enables targeted coverage-guided fuzzing.
Patch by Yannis Juglaret of DGA-MI, Rennes, France
libFuzzer tests its target against an evolving corpus, and relies on SanitizerCoverage instrumentation to collect the code coverage information that drives corpus evolution. Currently, libFuzzer collects such information for all functions of the target under test, and adds to the corpus every mutated sample that finds a new code coverage path in any function of the target. We propose instead to let the user specify which functions' code coverage information is relevant for building the upcoming fuzzing campaign's corpus. To this end, we add two new command line options for clang, enabling targeted coverage-guided fuzzing with libFuzzer. We see targeted coverage guided fuzzing as a simple way to leverage libFuzzer for big targets with thousands of functions or multiple dependencies. We publish this patch as work from DGA-MI of Rennes, France, with proper authorization from the hierarchy.
Targeted coverage-guided fuzzing can accelerate bug finding for two reasons. First, the compiler will avoid costly instrumentation for non-relevant functions, accelerating fuzzer execution for each call to any of these functions. Second, the built fuzzer will produce and use a more accurate corpus, because it will not keep the samples that find new coverage paths in non-relevant functions.
The two new command line options are `-fsanitize-coverage-whitelist` and `-fsanitize-coverage-blacklist`. They accept files in the same format as the existing `-fsanitize-blacklist` option <https://clang.llvm.org/docs/SanitizerSpecialCaseList.html#format>. The new options influence SanitizerCoverage so that it will only instrument a subset of the functions in the target. We explain these options in detail in `clang/docs/SanitizerCoverage.rst`.
Consider now the woff2 fuzzing example from the libFuzzer tutorial <https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md>. We are aware that we cannot conclude much from this example because mutating compressed data is generally a bad idea, but let us use it anyway as an illustration for its simplicity. Let us use an empty blacklist together with one of the three following whitelists:
```
# (a)
src:*
fun:*
# (b)
src:SRC/*
fun:*
# (c)
src:SRC/src/woff2_dec.cc
fun:*
```
Running the built fuzzers shows how many instrumentation points the compiler adds, the fuzzer will output //XXX PCs//. Whitelist (a) is the instrument-everything whitelist, it produces 11912 instrumentation points. Whitelist (b) focuses coverage to instrument woff2 source code only, ignoring the dependency code for brotli (de)compression; it produces 3984 instrumented instrumentation points. Whitelist (c) focuses coverage to only instrument functions in the main file that deals with WOFF2 to TTF conversion, resulting in 1056 instrumentation points.
For experimentation purposes, we ran each fuzzer approximately 100 times, single process, with the initial corpus provided in the tutorial. We let the fuzzer run until it either found the heap buffer overflow or went out of memory. On this simple example, whitelists (b) and (c) found the heap buffer overflow more reliably and 5x faster than whitelist (a). The average execution times when finding the heap buffer overflow were as follows: (a) 904 s, (b) 156 s, and (c) 176 s.
We explain these results by the fact that WOFF2 to TTF conversion calls the brotli decompression algorithm's functions, which are mostly irrelevant for finding bugs in WOFF2 font reconstruction but nevertheless instrumented and used by whitelist (a) to guide fuzzing. This results in longer execution time for these functions and a partially irrelevant corpus. Contrary to whitelist (a), whitelists (b) and (c) will execute brotli-related functions without instrumentation overhead, and ignore new code paths found in them. This results in faster bug finding for WOFF2 font reconstruction.
The results for whitelist (b) are similar to the ones for whitelist (c). Indeed, WOFF2 to TTF conversion calls functions that are mostly located in SRC/src/woff2_dec.cc. The 2892 extra instrumentation points allowed by whitelist (b) do not tamper with bug finding, even though they are mostly irrelevant, simply because most of these functions do not get called. We get a slightly faster average time for bug finding with whitelist (b), which might indicate that some of the extra instrumentation points are actually relevant, or might just be random noise.
Reviewers: kcc, morehouse, vitalybuka
Reviewed By: morehouse, vitalybuka
Subscribers: pratyai, vitalybuka, eternalsakura, xwlin222, dende, srhines, kubamracek, #sanitizers, lebedev.ri, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D63616
Currently the library is separately linked, but this isn't correct to
implement fast math flags correctly. Each module should get the
version of the library appropriate for its combination of fast math
and related flags, with the attributes propagated into its functions
and internalized.
HIP already maintains the list of libraries, but this is not used for
OpenCL. Unfortunately, HIP uses a separate --hip-device-lib argument,
despite both languages using the same bitcode library. Eventually
these two searches need to be merged.
An additional problem is there are 3 different locations the libraries
are installed, depending on which build is used. This also needs to be
consolidated (or at least the search logic needs to deal with this
unnecessary complexity).
These were accidental SCARY iterator uses that weren't guaranteed and in
libc++'s debug checking mode were actually distinct types. Use decltype
to make it easier to keep these things up to date.
When constrained floating point is enabled the AArch64-specific builtins don't use constrained intrinsics in some cases. Fix that.
Neon is part of this patch, so ARM is affected as well.
Differential Revision: https://reviews.llvm.org/D77074
This patch moves interface declarations into llvm-dwarfdump.h and wrap
declarations in anonymous namespaces as appropriate. At the same time,
the externals are moved into the `llvm::dwarfdump` namespace`.
Reviewed By: djtodoro
Differential Revision: https://reviews.llvm.org/D77848