excluding visibility bits.
Mips (o32 abi) specific e_header setting.
EF_MIPS_ABI_O32 needs to be set in the
ELF header flags for o32 abi output.
Contributer: Reed Kotler
llvm-svn: 175569
excluding visibility bits.
Mips (Mips16) specific e_header setting.
EF_MIPS_ARCH_ASE_M16 needs to be set in the
ELF header flags for Mips16.
Contributer: Reed Kotler
llvm-svn: 175566
excluding visibility bits.
Mips (MicroMips) specific STO handling .
The st_other field settig for STO_MIPS_MICROMIPS
Contributer: Zoran Jovanovic
llvm-svn: 175564
of the old jit and which we don't intend to support in mips16 or micromips.
This dependency is for the testing of whether an instruction is a pseudo.
llvm-svn: 175297
and update ELF header e_flags.
Currently gathering information such as symbol,
section and data is done by collecting it in an
MCAssembler object. From MCAssembler and MCAsmLayout
objects ELFObjectWriter::WriteObject() forms and
streams out the ELF object file.
This patch just adds a few members to the MCAssember
class to store and access the e_flag settings. It
allows for runtime additions to the e_flag by
assembler directives. The standalone assembler can
get to MCAssembler from getParser().getStreamer().getAssembler().
This patch is the generic infrastructure and will be
followed by patches for ARM and Mips for their target
specific use.
Contributer: Jack Carter
llvm-svn: 173882
but I cannot reproduce the problem and have scrubed my sources and
even tested with llvm-lit -v --vg.
Support for Mips register information sections.
Mips ELF object files have a section that is dedicated
to register use info. Some of this information such as
the assumed Global Pointer value is used by the linker
in relocation resolution.
The register info file is .reginfo in o32 and .MIPS.options
in 64 and n32 abi files.
This patch contains the changes needed to create the sections,
but leaves the actual register accounting for a future patch.
Contributer: Jack Carter
llvm-svn: 172847
we need to generate a N64 compound relocation
R_MIPS_GPREL_32/R_MIPS_64/R_MIPS_NONE.
The bug was exposed by the SingleSourcetest case
DuffsDevice.c.
Contributer: Jack Carter
llvm-svn: 172496
value in the 64 bit .eh_frame section.
It doesn't however allow exception handling to work
yet since it depends on the correct relocation model
being set in the ELF header flags.
Contributer: Jack Carter
llvm-svn: 171881
Mips16 is really a processor decoding mode (ala thumb 1) and in the same
program, mips16 and mips32 functions can exist and can call each other.
If a jal type instruction encounters an address with the lower bit set, then
the processor switches to mips16 mode (if it is not already in it). If the
lower bit is not set, then it switches to mips32 mode.
The linker knows which functions are mips16 and which are mips32.
When relocation is performed on code labels, this lower order bit is
set if the code label is a mips16 code label.
In general this works just fine, however when creating exception handling
tables and dwarf, there are cases where you don't want this lower order
bit added in.
This has been traditionally distinguished in gas assembly source by using a
different syntax for the label.
lab1: ; this will cause the lower order bit to be added
lab2=. ; this will not cause the lower order bit to be added
In some cases, it does not matter because in dwarf and debug tables
the difference of two labels is used and in that case the lower order
bits subtract each other out.
To fix this, I have added to mcstreamer the notion of a debuglabel.
The default is for label and debug label to be the same. So calling
EmitLabel and EmitDebugLabel produce the same result.
For various reasons, there is only one set of labels that needs to be
modified for the mips exceptions to work. These are the "$eh_func_beginXXX"
labels.
Mips overrides the debug label suffix from ":" to "=." .
This initial patch fixes exceptions. More changes most likely
will be needed to DwarfCFException to make all of this work
for actual debugging. These changes will be to emit debug labels in some
places where a simple label is emitted now.
Some historical discussion on this from gcc can be found at:
http://gcc.gnu.org/ml/gcc-patches/2008-08/msg00623.htmlhttp://gcc.gnu.org/ml/gcc-patches/2008-11/msg01273.html
llvm-svn: 170279
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
This patch provides support for the MIPS relocations:
*) R_MIPS_GOT_HI16
*) R_MIPS_GOT_LO16
*) R_MIPS_CALL_HI16
*) R_MIPS_CALL_LO16
These are used for large GOT instruction sequences.
Contributer: Jack Carter
llvm-svn: 168471
for the number of bytes in a particular instruction
to using
const MCInstrDesc &Desc = MCII.get(TmpInst.getOpcode());
Desc.getSize()
This is necessary with the advent of 16 bit instructions with
mips16 and micromips. It is also puts Mips in compliance with
the other targets for getting instruction size.
llvm-svn: 165171
If the code is generated as assembler, this transformation does not occur assuming that it will occur later in the assembler.
This code was originally called from MipsAsmPrinter.cpp and we needed to check for OutStreamer.hasRawTextSupport(). This was not a good place for it and has been moved to MCTargetDesc/MipsMCCodeEmitter.cpp where both direct object and the assembler use it it automagically.
The test cases have been checked in for a number of weeks now.
llvm-svn: 165067
* wrap code blocks in \code ... \endcode;
* refer to parameter names in paragraphs correctly (\arg is not what most
people want -- it starts a new paragraph);
* use \param instead of \arg to document parameters in order to be consistent
with the rest of the codebase.
llvm-svn: 163902
within the codegen EK_GPRel64BlockAddress. This was not
supported for direct object output and resulted in an assertion.
This change adds support for EK_GPRel64BlockAddress for
direct object.
One fallout from this is to turn on rela relocations
for mips64 to match gas.
llvm-svn: 162334
No new tests are added.
All tests in ExecutionEngine/MCJIT that have been failing pass after this patch
is applied (when "make check" is done on a mips board).
Patch by Petar Jovanovic.
llvm-svn: 162135
These 2 relocations gain access to the
highest and the second highest 16 bits
of a 64 bit object.
R_MIPS_HIGHER %higher(A+S)
The %higher(x) function is [ (((long long) x + 0x80008000LL) >> 32) & 0xffff ].
R_MIPS_HIGHEST %highest(A+S)
The %highest(x) function is [ (((long long) x + 0x800080008000LL) >> 48) & 0xffff ].
llvm-svn: 161348
is used in cases where global symbols are
directly represented in the GOT and we use an
offset into the global offset table.
This patch adds direct object support for R_MIPS_GOT_DISP.
llvm-svn: 160183
When WriteFragmentData() case FT_align called
Asm.getBackend().writeNopData() is called, nothing
is done since Mips implementation of writeNopData just
returned "true".
For some reason this has not caused problems in 32 bit
mode, but in 64 bit mode it caused an assert when processing
multiple function units.
The test case included will assert without this patch. It
runs twice with different flags to prevent false positives
due to changes in code generation over time.
llvm-svn: 160084
It takes advantage of r159299 which introduces relocation support for N64.
elf-dump needed to be upgraded to support N64 relocations as well.
This passes make check.
Jack
llvm-svn: 159301
which many Mips 64 ABIs use than for O64 which many
if not all other target ABIs use.
Most architectures have the following 64 bit relocation record format:
typedef struct
{
Elf64_Addr r_offset; /* Address of reference */
Elf64_Xword r_info; /* Symbol index and type of relocation */
} Elf64_Rel;
typedef struct
{
Elf64_Addr r_offset;
Elf64_Xword r_info;
Elf64_Sxword r_addend;
} Elf64_Rela;
Whereas N64 has the following format:
typedef struct
{
Elf64_Addr r_offset;/* Address of reference */
Elf64_Word r_sym; /* Symbol index */
Elf64_Byte r_ssym; /* Special symbol */
Elf64_Byte r_type3; /* Relocation type */
Elf64_Byte r_type2; /* Relocation type */
Elf64_Byte r_type; /* Relocation type */
} Elf64_Rel;
typedef struct
{
Elf64_Addr r_offset;/* Address of reference */
Elf64_Word r_sym; /* Symbol index */
Elf64_Byte r_ssym; /* Special symbol */
Elf64_Byte r_type3; /* Relocation type */
Elf64_Byte r_type2; /* Relocation type */
Elf64_Byte r_type; /* Relocation type */
Elf64_Sxword r_addend;
} Elf64_Rela;
The structure is the same size, but the r_info data element
is now 5 separate elements. Besides the content aspects,
endian byte reordering will be different for the area with
each element being endianized separately.
I treat this as generic and continue to pass r_type as
an integer masking and unmasking the byte sized N64
values for N64 mode. I've implemented this and it causes no
affect on other current targets.
This passes make check.
Jack
llvm-svn: 159299
This patch allows llvm to recognize that a 64 bit object file is being produced
and that the subsequently generated ELF header has the correct information.
The test case checks for both big and little endian flavors.
Patch by Jack Carter.
llvm-svn: 153889
These changes allow us to compile big endian from the command line for 32 bit
Mips targets. This patch will result in code and data actually being produced
in the correct endianess.
llvm-svn: 153153
needed to emit a 64-bit gp-relative relocation entry. Make changes necessary
for emitting jump tables which have entries with directive .gpdword. This patch
does not implement the parts needed for direct object emission or JIT.
llvm-svn: 149668
Whether a fixup needs relaxation for the associated instruction is a
target-specific function, as the FIXME indicated. Create a hook for that
and use it.
llvm-svn: 145881
- lower unaligned loads/stores.
- encode the size operand of instructions INS and EXT.
- emit relocation information needed for JAL (jump-and-link).
llvm-svn: 145113
and code model. This eliminates the need to pass OptLevel flag all over the
place and makes it possible for any codegen pass to use this information.
llvm-svn: 144788
"With this patch we can now generate runnable Mips code through LLVM
direct object emission. We have run numerous simple programs, both C
and C++ and with -O0 and -O3 from the output. The code is not production
ready, but quite useful for experimentation." Patch and message by
Jack Carter
llvm-svn: 144414
specified in the same file that the library itself is created. This is
more idiomatic for CMake builds, and also allows us to correctly specify
dependencies that are missed due to bugs in the GenLibDeps perl script,
or change from compiler to compiler. On Linux, this returns CMake to
a place where it can relably rebuild several targets of LLVM.
I have tried not to change the dependencies from the ones in the current
auto-generated file. The only places I've really diverged are in places
where I was seeing link failures, and added a dependency. The goal of
this patch is not to start changing the dependencies, merely to move
them into the correct location, and an explicit form that we can control
and change when necessary.
This also removes a serialization point in the build because we don't
have to scan all the libraries before we begin building various tools.
We no longer have a step of the build that regenerates a file inside the
source tree. A few other associated cleanups fall out of this.
This isn't really finished yet though. After talking to dgregor he urged
switching to a single CMake macro to construct libraries with both
sources and dependencies in the arguments. Migrating from the two macros
to that style will be a follow-up patch.
Also, llvm-config is still generated with GenLibDeps.pl, which means it
still has slightly buggy dependencies. The internal CMake
'llvm-config-like' macro uses the correct explicitly specified
dependencies however. A future patch will switch llvm-config generation
(when using CMake) to be based on these deps as well.
This may well break Windows. I'm getting a machine set up now to dig
into any failures there. If anyone can chime in with problems they see
or ideas of how to solve them for Windows, much appreciated.
llvm-svn: 136433
LLVM*AsmPrinter.
GenLibDeps.pl fails to detect vtable references. As this is the only
referenced symbol from LLVM*Desc to LLVM*AsmPrinter on optimized
builds, the algorithm that creates the list of libraries to be linked
into tools doesn't know about the dependency and sometimes places the
libraries on the wrong order, yielding error messages like this:
../../lib/libLLVMARMDesc.a(ARMMCTargetDesc.cpp.o): In function
`llvm::ARMInstPrinter::ARMInstPrinter(llvm::MCAsmInfo const&)':
ARMMCTargetDesc.cpp:(.text._ZN4llvm14ARMInstPrinterC1ERKNS_9MCAsmInfoE
[llvm::ARMInstPrinter::ARMInstPrinter(llvm::MCAsmInfo
const&)]+0x2a): undefined reference to `vtable for
llvm::ARMInstPrinter'
llvm-svn: 136328
The first problem to fix is to stop creating synthetic *Table_gen
targets next to all of the LLVM libraries. These had no real effect as
CMake specifies that add_custom_command(OUTPUT ...) directives (what the
'tablegen(...)' stuff expands to) are implicitly added as dependencies
to all the rules in that CMakeLists.txt.
These synthetic rules started to cause problems as we started more and
more heavily using tablegen files from *subdirectories* of the one where
they were generated. Within those directories, the set of tablegen
outputs was still available and so these synthetic rules added them as
dependencies of those subdirectories. However, they were no longer
properly associated with the custom command to generate them. Most of
the time this "just worked" because something would get to the parent
directory first, and run tablegen there. Once run, the files existed and
the build proceeded happily. However, as more and more subdirectories
have started using this, the probability of this failing to happen has
increased. Recently with the MC refactorings, it became quite common for
me when touching a large enough number of targets.
To add insult to injury, several of the backends *tried* to fix this by
adding explicit dependencies back to the parent directory's tablegen
rules, but those dependencies didn't work as expected -- they weren't
forming a linear chain, they were adding another thread in the race.
This patch removes these synthetic rules completely, and adds a much
simpler function to declare explicitly that a collection of tablegen'ed
files are referenced by other libraries. From that, we can add explicit
dependencies from the smaller libraries (such as every architectures
Desc library) on this and correctly form a linear sequence. All of the
backends are updated to use it, sometimes replacing the existing attempt
at adding a dependency, sometimes adding a previously missing dependency
edge.
Please let me know if this causes any problems, but it fixes a rather
persistent and problematic source of build flakiness on our end.
llvm-svn: 136023
- Introduce JITDefault code model. This tells targets to set different default
code model for JIT. This eliminates the ugly hack in TargetMachine where
code model is changed after construction.
llvm-svn: 135580
(including compilation, assembly). Move relocation model Reloc::Model from
TargetMachine to MCCodeGenInfo so it's accessible even without TargetMachine.
llvm-svn: 135468
to MCRegisterInfo. Also initialize the mapping at construction time.
This patch eliminate TargetRegisterInfo from TargetAsmInfo. It's another step
towards fixing the layering violation.
llvm-svn: 135424