Recommit r363289 with a bug fix for crash identified in pr42279. Issue was that a loop exit test does not have to be an icmp, leading to a null dereference crash when new logic was exercised for that case. Test case previously committed in r363601.
Original commit comment follows:
This contains fixes for two cases where we might invalidate inbounds and leave it stale in the IR (a miscompile). Case 1 is when switching to an IV with no dynamically live uses, and case 2 is when doing pre-to-post conversion on the same pointer type IV.
The basic scheme used is to prove that using the given IV (pre or post increment forms) would have to already trigger UB on the path to the test we're modifying. As such, our potential UB triggering use does not change the semantics of the original program.
As was pointed out in the review thread by Nikita, this is defending against a separate issue from the hasConcreteDef case. This is about poison, that's about undef. Unfortunately, the two are different, see Nikita's comment for a fuller explanation, he explains it well.
(Note: I'm going to address Nikita's last style comment in a separate commit just to minimize chance of subtle bugs being introduced due to typos.)
Differential Revision: https://reviews.llvm.org/D62939
llvm-svn: 363613
If we can detect that saturating math that depends on an IV cannot
overflow, replace it with simple math. This is similar to the CVP
optimization from D62703, just based on a different underlying
analysis (SCEV vs LVI) that catches different cases.
Differential Revision: https://reviews.llvm.org/D62792
llvm-svn: 363489
InsertBinop now accepts NoWrapFlags, so pass them through when
expanding a simple add expression.
This is the first re-commit of the functional changes from rL362687,
which was previously reverted.
Differential Revision: https://reviews.llvm.org/D61934
llvm-svn: 363364
This contains fixes for two cases where we might invalidate inbounds and leave it stale in the IR (a miscompile). Case 1 is when switching to an IV with no dynamically live uses, and case 2 is when doing pre-to-post conversion on the same pointer type IV.
The basic scheme used is to prove that using the given IV (pre or post increment forms) would have to already trigger UB on the path to the test we're modifying. As such, our potential UB triggering use does not change the semantics of the original program.
As was pointed out in the review thread by Nikita, this is defending against a separate issue from the hasConcreteDef case. This is about poison, that's about undef. Unfortunately, the two are different, see Nikita's comment for a fuller explanation, he explains it well.
(Note: I'm going to address Nikita's last style comment in a separate commit just to minimize chance of subtle bugs being introduced due to typos.)
Differential Revision: https://reviews.llvm.org/D62939
llvm-svn: 363289
The issue addressed in r363180 is more broadly relevant. For the moment, we don't actually get any of these cases because we a) restrict SCEV formation due to SCEExpander needing to preserve LCSSA, and b) don't iterate between loops.
llvm-svn: 363192
SCEV does not propagate arguments through one-input Phis so as to make it easy for the SCEV expander (and related code) to preserve LCSSA. It's not entirely clear this restriction is neccessary, but for the moment it exists. For this reason, we don't analyze single-entry phi inputs. However it is possible that when an this input leaves the loop through LCSSA Phi, it is a provable constant. Missing that results in an order of optimization issue in loop exit value rewriting where we miss some oppurtunities based on order in which we visit sibling loops.
This patch teaches computeSCEVAtScope about this case. We can generalize it later, but so far we can only replace LCSSA Phis with their constant loop-exiting values. We should probably also add similiar logic directly in the SCEV construction path itself.
Patch by: mkazantsev (with revised commit message by me)
Differential Revision: https://reviews.llvm.org/D58113
llvm-svn: 363180
We were only matching RHS being a loop invariant value, not the inverse. Since there's nothing which appears to canonicalize loop invariant values to RHS, this means we missed cases.
Differential Revision: https://reviews.llvm.org/D63112
llvm-svn: 363108
As pointed out by Nikita in review, undef and poison need to be handled separately. Since we're no longer expecting any test improvements - just fixes for miscompiles - update the tests to bypass the existing undef check.
llvm-svn: 363002
There are two interesting sub-cases here. 1) Switching IVs is legal, but only in pre-increment form. and 2) Switching IVs is legal, and so is post-increment form.
llvm-svn: 362993
Flesh out a collection of tests for switching to a dead IV within LFTR, both for the current miscompile, and for some cases which we should be able to handle via simple reasoning.
llvm-svn: 362976
This was discussed as part of D62880. The basic thought is that computing BE taken count after widening should produce (on average) an equally good backedge taken count as the one before widening. Since there's only one test in the suite which is impacted by this change, and it's essentially equivelent codegen, that seems to be a reasonable assertion. This change was separated from r362971 so that if this turns out to be problematic, the triggering piece is obvious and easily revertable.
For the nestedIV example from elim-extend.ll, we end up with the following BE counts:
BEFORE: (-2 + (-1 * %innercount) + %limit)
AFTER: (-1 + (sext i32 (-1 + %limit) to i64) + (-1 * (sext i32 %innercount to i64))<nsw>)
Note that before is an i32 type, and the after is an i64. Truncating the i64 produces the i32.
llvm-svn: 362975
If the given SCEVExpr has no (un)signed flags attached to it, transfer
these to the resulting instruction or use them to find an existing
instruction.
Differential Revision: https://reviews.llvm.org/D61934
llvm-svn: 362687
Oddly, I had to change a value name from "tmp0" to "bc0" to get the autogened test to pass. I'm putting this down to an oddity of update_test_checks or FileCheck, but don't understand it.
llvm-svn: 362532
(Recommit after fixing a keymash in the run line. Sorry for breakage.)
This is preparation for D62625 <https://reviews.llvm.org/D62625>
llvm-svn: 362426
Fix for https://bugs.llvm.org/show_bug.cgi?id=31181 and partial fix
for LFTR poison handling issues in general.
When LFTR moves a condition from pre-inc to post-inc, it may now
depend on value that is poison due to nowrap flags. To avoid this,
we clear any nowrap flag that SCEV cannot prove for the post-inc
addrec.
Additionally, LFTR may switch to a different IV that is dynamically
dead and as such may be arbitrarily poison. This patch will correct
nowrap flags in some but not all cases where this happens. This is
related to the adoption of IR nowrap flags for the pre-inc addrec.
(See some of the switch_to_different_iv tests, where flags are not
dropped or insufficiently dropped.)
Finally, there are likely similar issues with the handling of GEP
inbounds, but we don't have a test case for this yet.
Differential Revision: https://reviews.llvm.org/D60935
llvm-svn: 362292
One case where overflow happens in the first loop iteration, and
two cases where we switch to a dynamically dead IV with post/pre
increment, respectively.
llvm-svn: 361189
These are all of the ones involving the same data layout string. Remainder take a bit more consideration, but at least everything can be auto-updated now.
llvm-svn: 360961
Summary:
Currently we express umin as `~umax(~x, ~y)`. However, this becomes
a problem for operands in non-integral pointer spaces, because `~x`
is not something we can compute for `x` non-integral. However, since
comparisons are generally still allowed, we are actually able to
express `umin(x, y)` directly as long as we don't try to express is
as a umax. Support this by adding an explicit umin/smin representation
to SCEV. We do this by factoring the existing getUMax/getSMax functions
into a new function that does all four. The previous two functions were
largely identical.
Reviewed By: sanjoy
Differential Revision: https://reviews.llvm.org/D50167
llvm-svn: 360159
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
A SCEV is not low-cost just because you can divide it by a power of 2. We need to also
check what we are dividing to make sure it too is not a high-code expansion. This helps
to not expand the exit value of certain loops, helping not to bloat the code.
The change in no-iv-rewrite.ll is reverting back to what it was testing before rL194116,
and looks a lot like the other tests in replace-loop-exit-folds.ll.
Differential Revision: https://reviews.llvm.org/D58435
llvm-svn: 355393
In some cases, MaxBECount can be less precise than ExactBECount for AND
and OR (the AND case was PR26207). In the OR test case, both ExactBECounts are
undef, but MaxBECount are different, so we hit the assertion below. This
patch uses the same solution the AND case already uses.
Assertion failed:
((isa<SCEVCouldNotCompute>(ExactNotTaken) || !isa<SCEVCouldNotCompute>(MaxNotTaken))
&& "Exact is not allowed to be less precise than Max"), function ExitLimit
This patch also consolidates test cases for both AND and OR in a single
test case.
Fixes https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=13245
Reviewers: sanjoy, efriedma, mkazantsev
Reviewed By: sanjoy
Differential Revision: https://reviews.llvm.org/D58853
llvm-svn: 355259
Logic in `getInsertPointForUses` doesn't account for a corner case when `Def`
only comes to a Phi user from unreachable blocks. In this case, the incoming
value may be arbitrary (and not even available in the input block) and break
the loop-related invariants that are asserted below.
In fact, if we encounter this situation, no IR modification is needed. This
Phi will be simplified away with nearest cleanup.
Differential Revision: https://reviews.llvm.org/D58045
Reviewed By: spatel
llvm-svn: 353816
The patch has been reverted because it ended up prohibiting propagation
of a constant to exit value. For such values, we should skip all checks
related to hard uses because propagating a constant is always profitable.
Differential Revision: https://reviews.llvm.org/D53691
llvm-svn: 346397