This makes it more likely that we can use the 16-bit push and pop instructions
on Thumb-2, saving around 4 bytes per function.
Differential Revision: http://reviews.llvm.org/D9165
llvm-svn: 235637
This appears to have been introduced back in r76698 as part of an unrelated
change. I can find no official ARM documentation stating that Thumb-2 functions
require 4-byte alignment; in fact, ARM documentation appears to contradict
this (see, e.g., ARM Architecture Reference Manual Thumb-2 Supplement,
section 2.6.1: "Thumb-2 enforces 16-bit alignment on all instructions.").
Also remove code that sets alignment for ARM functions, which is redundant
with code in the MachineFunction constructor, and remove the hidden
-arm-align-constant-islands flag, which has been enabled by default since
r146739 (Dec 2011) and has probably received sufficient testing by now.
Differential Revision: http://reviews.llvm.org/D9138
llvm-svn: 235636
TableGen had been nicely generating code to print a number of instructions using
shorter aliases (and PowerPC has plenty of short mnemonics), but we were not
calling it. For some of the aliases we support in the parser, TableGen can't
infer the "inverse" alias relationship, so there is still more to do.
Thus, after some hours of updating test cases...
llvm-svn: 235616
Summary:
Constant stores of f16 vectors can create NvCast nodes from various
operand types to v4f16 or v8f16 depending on patterns in the stored
constants. This patch adds nvcast rules with v4f16 and v8f16 values.
AArchISelLowering::LowerBUILD_VECTOR has the details on which constant
patterns generate the nvcast nodes.
Reviewers: jmolloy, srhines, ab
Subscribers: rengolin, aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D9201
llvm-svn: 235610
Summary:
Set operation action for SINT_TO_FP and UINT_TO_FP nodes with v4i32,
v8i8, v8i16 inputs to allow promotion of v4f16 results.
Add tests for sitofp and uitofp for vec4, vec8, vec16, and i8, i16, i32,
and i64 vectors. Only missing tests are for v16i8 and v16i16 as the
shift operations are too complicated to write a proper check sequence.
The conversions from v4i64 to v4f16 do not depend on this patch - v4i64
is split and the conversion gets handled while lowering v2i64. I am
adding a test here for completeness.
Reviewers: aemerson, rengolin, ab, jmolloy, srhines
Subscribers: rengolin, aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D9166
llvm-svn: 235609
Third time's the charm. The previous commit was reverted as a
reverse for-loop in SelectionDAGBuilder::lowerWorkItem did 'I--'
on an iterator at the beginning of a vector, causing asserts
when using debugging iterators. This commit fixes that.
llvm-svn: 235608
Patch to remove extra bitcasts from shuffles, this is often a legacy of XformToShuffleWithZero being used to combine bitmaskings (of float vectors bitcast to integer vectors) into shuffles: bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1)
Differential Revision: http://reviews.llvm.org/D9097
llvm-svn: 235578
This is a re-commit of r235101, which also fixes the problems with the previous patch:
- Switches with only a default case and non-fallthrough were handled incorrectly
- The previous patch tickled a bug in PowerPC Early-Return Creation which is fixed here.
> This is a major rewrite of the SelectionDAG switch lowering. The previous code
> would lower switches as a binary tre, discovering clusters of cases
> suitable for lowering by jump tables or bit tests as it went along. To increase
> the likelihood of finding jump tables, the binary tree pivot was selected to
> maximize case density on both sides of the pivot.
>
> By not selecting the pivot in the middle, the binary trees would not always
> be balanced, leading to performance problems in the generated code.
>
> This patch rewrites the lowering to search for clusters of cases
> suitable for jump tables or bit tests first, and then builds the binary
> tree around those clusters. This way, the binary tree will always be balanced.
>
> This has the added benefit of decoupling the different aspects of the lowering:
> tree building and jump table or bit tests finding are now easier to tweak
> separately.
>
> For example, this will enable us to balance the tree based on profile info
> in the future.
>
> The algorithm for finding jump tables is quadratic, whereas the previous algorithm
> was O(n log n) for common cases, and quadratic only in the worst-case. This
> doesn't seem to be major problem in practice, e.g. compiling a file consisting
> of a 10k-case switch was only 30% slower, and such large switches should be rare
> in practice. Compiling e.g. gcc.c showed no compile-time difference. If this
> does turn out to be a problem, we could limit the search space of the algorithm.
>
> This commit also disables all optimizations during switch lowering in -O0.
>
> Differential Revision: http://reviews.llvm.org/D8649
llvm-svn: 235560
This removes the -sehprepare flag and makes __C_specific_handler
functions always to use WinEHPrepare.
This was tested by building all of chromium_builder_tests and running a
few tests that use SEH, but if something breaks, we can revert this.
llvm-svn: 235557
In particular, this handles SSA values that are live *out* of a handler.
The existing code only handles values that are live *in* to a handler.
It also handles phi nodes in the block where normal control should
resume after the end of a catch handler. When EH return points have phi
nodes, we need to split the return edge. It is impossible for phi
elimination to emit copies in the previous block if that block gets
outlined. The indirectbr that we leave in the function is only notional,
and is eliminated from the MachineFunction CFG early on.
Reviewers: majnemer, andrew.w.kaylor
Differential Revision: http://reviews.llvm.org/D9158
llvm-svn: 235545
Summary:
Remove the CHECK-DAG calls introduced in r235341, and add a comment that
this test may break due to scheduling variations.
This patch completes the fix discussed in http://reviews.llvm.org/D8804
Reviewers: dsanders, srhines
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9178
llvm-svn: 235530
This fixes a regression introduced at revision 218263.
On AVX, if we optimize for size, a splat build_vector of a load
is lowered into a VBROADCAST node. This is done even if the value type of the
splat build_vector node is v2i64.
Since AVX doesn't support v2f64/v2i64 broadcasts, revision 218263 added two
extra tablegen patterns to allow selecting a VMOVDDUPrm from an X86VBroadcast
where the scalar element comes from a loadi64/loadf64.
However, revision 218263 forgot to add an extra fallback pattern for the case
where we have a X86VBroadcast of a loadi64 with multiple uses.
This patch adds the missing tablegen pattern in X86InstrSSE.td.
This patch also adds an extra test to 'splat-for-size.ll' to verify that ISel
doesn't crash with a 'fatal error in the backend' due to a missing AVX pattern
to select v2i64 X86ISD::BROADCAST nodes.
llvm-svn: 235509
This turned up after r235333, but was a pre-existing bug. The optimization
which transforms select(c, load, load) into a load of a select of the addresses
does not handle indexed loads (pre/post inc/dec). However, it did not check for
them either, leading to a crash if it tried to transform one of them.
llvm-svn: 235497
Enough concerns were raised that this optimization is pessimising some code patterns.
The obvious fix, to add a Reassociate run afterwards, causes even more pessimisation in some cases due to fewer complex addressing modes being matched. As there isn't a trivial fix for this, backing this out by default until someone gets a chance to fix the addressing mode matcher.
llvm-svn: 235491
X86 backend.
The code generated for symbolic targets is identical to the code generated for
constant targets, except that a relocation is emitted to fix up the actual
target address at link-time. This allows IR and object files containing
patchpoints to be cached across JIT-invocations where the target address may
change.
llvm-svn: 235483
With SSE2, we can generate a 'movq' or other 64-bit store op on a 32-bit system
even though 64-bit integers are not legal types.
So instead of producing this:
pshufd $229, %xmm0, %xmm1 ## xmm1 = xmm0[1,1,2,3]
movd %xmm0, (%eax)
movd %xmm1, 4(%eax)
We can do:
movq %xmm0, (%eax)
This is a fix for the problem noted in D7296.
Differential Revision: http://reviews.llvm.org/D9134
llvm-svn: 235460
We should also teach the inliner to collapse framerecover of
frameaddress of the current frame down to an alloca, but that can happen
later.
llvm-svn: 235459
Keep the old SEH fan-in lowering on by default for now, since projects
rely on it. This will make it easy to test this change with a simple
flag flip.
llvm-svn: 235399
There doesn't seem to be a reason to perform this target ISD node matching
in an DAGCombine, moving it to lowering fixes PR23296.
Differential Revision: http://reviews.llvm.org/D9137
llvm-svn: 235394
Summary:
The 64-bit version of the variable shift instructions uses the
shift_rotate_reg class which uses a GPR32Opnd to specify the variable
shift amount. With this patch we avoid the generation of a redundant
SLL instruction for the variable shift instructions in 64-bit targets.
Reviewers: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7413
llvm-svn: 235376
This is an updated version of Chandler's patch D7402 that got accepted but never committed, and has bit-rotted a bit since.
I've updated the execution domain declarations to match the approach of the packed templates and also added some extra scalar unary tests.
Differential Revision: http://reviews.llvm.org/D9095
llvm-svn: 235372
Fixed issue with the combine of CONCAT_VECTOR of 2 BUILD_VECTOR nodes - the optimisation wasn't ensuring that the scalar operands of both nodes were the same type/size for implicit truncation.
Test case spotted by Patrik Hagglund
llvm-svn: 235371
Summary:
This fixes http://llvm.org/bugs/show_bug.cgi?id=16439.
This is one possible way to approach this. The other would be to split InL>>(nbits-Amt) into (InL>>(nbits-1-Amt))>>1, which is also valid since since we only need to care about Amt up nbits-1. It's hard to tell which one is better since the shift might be expensive if this stage of expansion is not yet a legal machine integer, whereas comparisons with zero are relatively cheap at all sizes, but more expensive than a shift if the shift is on a legal machine type.
Patch by Keno Fischer!
Test Plan: regression test from http://reviews.llvm.org/D7752
Reviewers: chfast, resistor
Reviewed By: chfast, resistor
Subscribers: sanjoy, resistor, chfast, llvm-commits
Differential Revision: http://reviews.llvm.org/D4978
llvm-svn: 235370
X86ISD::ADDSUB, X86ISD::(F)HADD, X86ISD::(F)HSUB should not be selected
if the operand types do not match the result type because vector type
legalization cannot deal with this for custom nodes.
Testcase X86ISD::ADDSUB is attached. I could not create a testcase for
the FHADD/FHSUB cases because of: https://llvm.org/bugs/show_bug.cgi?id=23296
Differential Revision: http://reviews.llvm.org/D9120
llvm-svn: 235367
Summary:
In the f16-promote test, make the checks for native conversion instructions
similar to the libcall checks:
- Remove hard coded register names
- Do not check exact instruction sequences.
This fixes test flakiness due to non-determinism in instruction
scheduling and register allocation. I also fixed a few minor things in
the CHECK-LIBCALL checks.
I'll try to find a way to check that unnecessary loads, stores, or
conversions don't happen.
Reviewers: mzolotukhin, srhines, ab
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9112
llvm-svn: 235363
Summary:
Set operation action for FP16 conversion opcodes, so the Op legalizer
can choose the gnu_* libcalls for Mips.
Set LoadExtAction and TruncStoreAction for f16 scalars and vectors to
prevent (fpext (load )) and (store (fptrunc)) from getting combined into
unsupported operations.
Added test cases to test that these operations are handled correctly
for f16 scalars and vectors. This patch depends on
http://reviews.llvm.org/D8755.
Reviewers: srhines
Subscribers: llvm-commits, ab
Differential Revision: http://reviews.llvm.org/D8804
llvm-svn: 235341
This fixes a regression introduced at revision 231243.
The target-independent selection algorithm in FastISel knows how to select
a SINT_TO_FP if the target is SSE but not AVX. That is because on X86, the
tablegen'd 'fastEmit' functions know how to select CVTSI2SSrr and CVTSI2SDrr.
Method X86FastISel::X86SelectSIToFP was therefore working under the
wrong assumption that the target was AVX. That assumption was incorrect since
we can have a target that is neither AVX nor SSE.
So, rather than asserting for the presence of AVX, we should have had an
early exit from 'X86SelectSIToFP' if the target was not AVX.
This patch fixes the issue replacing the invalid assertion with an early exit.
Thanks to Dimitry Andric for reporting this problem and for providing a small
reproducible testcase. Added test pr23273.ll.
llvm-svn: 235295
When an inline asm call has an output register marked as early-clobber, but
that same register is also an input operand, what should we do? GCC accepts
this, and is documented to accept this for read/write operands saying,
"Furthermore, if the earlyclobber operand is also a read/write operand, then
that operand is written only after it's used." For write-only operands, the
situation seems less clear, but I have at least one existing codebase that
assumes this will work, in part because it has syscall macros like this:
({ \
register uint64_t r0 __asm__ ("r0") = (__NR_ ## name); \
register uint64_t r3 __asm__ ("r3") = ((uint64_t) (arg0)); \
register uint64_t r4 __asm__ ("r4") = ((uint64_t) (arg1)); \
register uint64_t r5 __asm__ ("r5") = ((uint64_t) (arg2)); \
__asm__ __volatile__ \
("sc" \
: "=&r"(r0),"=&r"(r3),"=&r"(r4),"=&r"(r5) \
: "0"(r0), "1"(r3), "2"(r4), "3"(r5) \
: "r6","r7","r8","r9","r10","r11","r12","cr0","memory"); \
r3; \
})
Furthermore, with register aliases and subregister relationships that only the
backend knows about, rejecting this in the frontend seems like a difficult
proposition (if we wanted to do so). However, keeping the early-clobber flag on
the INLINEASM MI does not work for us, because it will cause the register's
live interval to end to soon (so it will not appear defined to be used as an
input).
Fortunately, fixing this does not seem hard: When forming the INLINEASM MI,
check to see if any of the early-clobber outputs are also inputs, and if so,
remove the early-clobber flag.
llvm-svn: 235283
The fix ensures that scalar sources inserted into a vector are the correct bit size.
Integer scalar sources from BUILD_VECTOR and SCALAR_TO_VECTOR nodes may require truncation that this function doesn't currently support.
llvm-svn: 235281
Instead of merging everything together, look at the users of
GlobalVariables, and try to group them by function, to create
sets of globals used "together".
Using that information, a less-aggressive alternative is to keep merging
everything together *except* globals that are only ever used alone, that
is, those for which it's clearly non-profitable to merge with others.
In my testing, grouping by Function is too aggressive, but grouping by
BasicBlock is too conservative. Anything in-between isn't trivially
available, so stick with Function grouping for now.
cl::opts are added for testing; both enabled by default.
A few of the testcases aren't testing the merging proper, but just
various edge cases when merging does occur. Update them to use the
previous grouping behavior. Also, one of the tests is unrelated to
GlobalMerge; change it accordingly.
While there, switch to r234666' flags rather than the brutal -O3.
Differential Revision: http://reviews.llvm.org/D8070
llvm-svn: 235249
The result is either an Untyped reg sequence, on ldN with N > 1, or
just the type of the input vector, on ld1. Don't force Untyped.
Instead, just use the type of the reg sequence.
This mirrors the behavior of createTuple, which feeds the LD1*_POST.
The narrow code path wasn't actually covered by tests, because V64
insert_vector_elt are widened to V128 before the LD1LANEpost combine
has the chance to run, usually.
The only case where it does run on V64 vectors is if the vector ops
legalizer ran. So, tickle the code with a ctpop.
Fixes PR23265.
llvm-svn: 235243
Summary:
This patch adds legalization support to operate on FP16 as a load/store type
and do operations on it as floats.
Tests for ARM are added to test/CodeGen/ARM/fp16-promote.ll
Reviewers: srhines, t.p.northover
Differential Revision: http://reviews.llvm.org/D8755
llvm-svn: 235215
Summary: Implement the method FastMaterializeAlloca in Mips fast-isel
Based on a patch by Reed Kotler.
Test Plan:
Passes test-suite at O0/O2 for mips32 r1/r2
fastalloca.ll
Reviewers: dsanders, rkotler
Subscribers: rfuhler, llvm-commits
Differential Revision: http://reviews.llvm.org/D6742
llvm-svn: 235213
Summary:
Add shift operators implementation to fast-isel for Mips. These are shift ops
for non legal forms, i.e. i8 and i16.
Based on a patch by Reed Kotler.
Test Plan:
Reviewers: dsanders
Subscribers: echristo, rfuhler, llvm-commits
Differential Revision: http://reviews.llvm.org/D6726
llvm-svn: 235194
This is a followon to r233681 - I'd misunderstood the semantics of FTRUNC,
and had confused it with (FP_ROUND ..., 0).
Thanks for Ahmed Bougacha for his post-commit review!
llvm-svn: 235191
Summary:
Previously, the presence of KILL instructions would block valid candidates
from filling a specific delay slot. With the elimination of the KILL
instructions, in the appropriate range, we are able to fill more slots and
keep the information from future def/use analysis consistent.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: hfinkel, llvm-commits
Differential Revision: http://reviews.llvm.org/D7724
llvm-svn: 235183
This now emits simple, unoptimized xdata tables for __C_specific_handler
based on the handlers listed in @llvm.eh.actions calls produced by
WinEHPrepare.
This adds support for running __finally blocks when exceptions are
thrown, and removes the old landingpad fan-in codepath.
I ran some manual execution tests on small basic test cases with and
without optimization, as well as on Chrome base_unittests, which uses a
small amount of SEH. I'm sure there are bugs, and we may need to
revert.
llvm-svn: 235154
Found by code inspection, but breaking i16 at least breaks other tests.
They aren't checking this in particular though, so also add some
explicit tests for the already working types.
llvm-svn: 235148
See r230786 and r230794 for similar changes to gep and load
respectively.
Call is a bit different because it often doesn't have a single explicit
type - usually the type is deduced from the arguments, and just the
return type is explicit. In those cases there's no need to change the
IR.
When that's not the case, the IR usually contains the pointer type of
the first operand - but since typed pointers are going away, that
representation is insufficient so I'm just stripping the "pointerness"
of the explicit type away.
This does make the IR a bit weird - it /sort of/ reads like the type of
the first operand: "call void () %x(" but %x is actually of type "void
()*" and will eventually be just of type "ptr". But this seems not too
bad and I don't think it would benefit from repeating the type
("void (), void () * %x(" and then eventually "void (), ptr %x(") as has
been done with gep and load.
This also has a side benefit: since the explicit type is no longer a
pointer, there's no ambiguity between an explicit type and a function
that returns a function pointer. Previously this case needed an explicit
type (eg: a function returning a void() function was written as
"call void () () * @x(" rather than "call void () * @x(" because of the
ambiguity between a function returning a pointer to a void() function
and a function returning void).
No ambiguity means even function pointer return types can just be
written alone, without writing the whole function's type.
This leaves /only/ the varargs case where the explicit type is required.
Given the special type syntax in call instructions, the regex-fu used
for migration was a bit more involved in its own unique way (as every
one of these is) so here it is. Use it in conjunction with the apply.sh
script and associated find/xargs commands I've provided in rr230786 to
migrate your out of tree tests. Do let me know if any of this doesn't
cover your cases & we can iterate on a more general script/regexes to
help others with out of tree tests.
About 9 test cases couldn't be automatically migrated - half of those
were functions returning function pointers, where I just had to manually
delete the function argument types now that we didn't need an explicit
function type there. The other half were typedefs of function types used
in calls - just had to manually drop the * from those.
import fileinput
import sys
import re
pat = re.compile(r'((?:=|:|^|\s)call\s(?:[^@]*?))(\s*$|\s*(?:(?:\[\[[a-zA-Z0-9_]+\]\]|[@%](?:(")?[\\\?@a-zA-Z0-9_.]*?(?(3)"|)|{{.*}}))(?:\(|$)|undef|inttoptr|bitcast|null|asm).*$)')
addrspace_end = re.compile(r"addrspace\(\d+\)\s*\*$")
func_end = re.compile("(?:void.*|\)\s*)\*$")
def conv(match, line):
if not match or re.search(addrspace_end, match.group(1)) or not re.search(func_end, match.group(1)):
return line
return line[:match.start()] + match.group(1)[:match.group(1).rfind('*')].rstrip() + match.group(2) + line[match.end():]
for line in sys.stdin:
sys.stdout.write(conv(re.search(pat, line), line))
llvm-svn: 235145
A big-endian vector return needs a byte-swap which we aren't doing right now.
For now just bail on these cases to get correctness back.
llvm-svn: 235133
This is a major rewrite of the SelectionDAG switch lowering. The previous code
would lower switches as a binary tre, discovering clusters of cases
suitable for lowering by jump tables or bit tests as it went along. To increase
the likelihood of finding jump tables, the binary tree pivot was selected to
maximize case density on both sides of the pivot.
By not selecting the pivot in the middle, the binary trees would not always
be balanced, leading to performance problems in the generated code.
This patch rewrites the lowering to search for clusters of cases
suitable for jump tables or bit tests first, and then builds the binary
tree around those clusters. This way, the binary tree will always be balanced.
This has the added benefit of decoupling the different aspects of the lowering:
tree building and jump table or bit tests finding are now easier to tweak
separately.
For example, this will enable us to balance the tree based on profile info
in the future.
The algorithm for finding jump tables is O(n^2), whereas the previous algorithm
was O(n log n) for common cases, and quadratic only in the worst-case. This
doesn't seem to be major problem in practice, e.g. compiling a file consisting
of a 10k-case switch was only 30% slower, and such large switches should be rare
in practice. Compiling e.g. gcc.c showed no compile-time difference. If this
does turn out to be a problem, we could limit the search space of the algorithm.
This commit also disables all optimizations during switch lowering in -O0.
Differential Revision: http://reviews.llvm.org/D8649
llvm-svn: 235101
Fix for test case found by James Molloy - TRUNCATE of constant build vectors can be more simply achieved by simply replacing with a new build vector node with the truncated value type - no need to touch the scalar operands at all.
llvm-svn: 235079
The only type that isn't an integer, isn't floating point, and isn't
a vector; ladies and gentlemen, the gift that keeps on giving: x86_mmx!
Fixes PR23246.
Original message (reverted in r235062):
[CodeGen] Combine concat_vectors of scalars into build_vector.
Combine something like:
(v8i8 concat_vectors (v2i8 bitcast (i16)) x4)
into:
(v8i8 (bitcast (v4i16 BUILD_VECTOR (i16) x4)))
If any of the scalars are floating point, use that throughout.
Differential Revision: http://reviews.llvm.org/D8948
llvm-svn: 235072
The way we split SEH catch-all blocks can leave some dead EH values
behind at -O0. Try to remove them, and if we fail, replace them all with
undef.
Fixes a crash when removing the old unreachable landingpad which is
still used by extractvalue instructions in the catch-all block.
llvm-svn: 235061
Remove 'inlinedAt:' from MDLocalVariable. Besides saving some memory
(variables with it seem to be single largest `Metadata` contributer to
memory usage right now in -g -flto builds), this stops optimization and
backend passes from having to change local variables.
The 'inlinedAt:' field was used by the backend in two ways:
1. To tell the backend whether and into what a variable was inlined.
2. To create a unique id for each inlined variable.
Instead, rely on the 'inlinedAt:' field of the intrinsic's `!dbg`
attachment, and change the DWARF backend to use a typedef called
`InlinedVariable` which is `std::pair<MDLocalVariable*, MDLocation*>`.
This `DebugLoc` is already passed reliably through the backend (as
verified by r234021).
This commit removes the check from r234021, but I added a new check
(that will survive) in r235048, and changed the `DIBuilder` API in
r235041 to require a `!dbg` attachment whose 'scope:` is in the same
`MDSubprogram` as the variable's.
If this breaks your out-of-tree testcases, perhaps the script I used
(mdlocalvariable-drop-inlinedat.sh) will help; I'll attach it to PR22778
in a moment.
llvm-svn: 235050
Add missing `!dbg` attachments to `@llvm.dbg.*` intrinsics. I updated
these using a script (add-dbg-to-intrinsics.sh) that I'll attach to
PR22778 for posterity.
llvm-svn: 235040
This avoids emitting code for unreachable landingpad blocks that contain
calls to llvm.eh.actions and indirectbr.
It's also a first step towards unifying the SEH and WinEH lowering
codepaths. I'm keeping the old fan-in lowering of SEH around until the
preparation version works well enough that we can switch over without
breaking existing users.
llvm-svn: 235037
Many of these predate llvm-readobj. With elf-dump we had to match
a relocation to symbol number and symbol number to symbol name or
section number.
llvm-svn: 235015
This is a 1-line patch (with a TODO for AVX because that will affect
even more regression tests) that lets us substitute the appropriate
64-bit store for the float/double/int domains.
It's not clear to me exactly what the difference is between the 0xD6 (MOVPQI2QImr) and
0x7E (MOVSDto64mr) opcodes, but this is apparently the right choice.
Differential Revision: http://reviews.llvm.org/D8691
llvm-svn: 235014
Set the transform bar at 2 divisions because the fastest current
x86 FP divider circuit is in SandyBridge / Haswell at 10 cycle
latency (best case) relative to a 5 cycle multiplier.
So that's the worst case for this transform (no latency win),
but multiplies are obviously pipelined while divisions are not,
so there's still a big throughput win which we would expect to
show up in typical FP code.
These are the sequences I'm comparing:
divss %xmm2, %xmm0
mulss %xmm1, %xmm0
divss %xmm2, %xmm0
Becomes:
movss LCPI0_0(%rip), %xmm3 ## xmm3 = mem[0],zero,zero,zero
divss %xmm2, %xmm3
mulss %xmm3, %xmm0
mulss %xmm1, %xmm0
mulss %xmm3, %xmm0
[Ignore for the moment that we don't optimize the chain of 3 multiplies
into 2 independent fmuls followed by 1 dependent fmul...this is the DAG
version of: https://llvm.org/bugs/show_bug.cgi?id=21768 ...if we fix that,
then the transform becomes even more profitable on all targets.]
Differential Revision: http://reviews.llvm.org/D8941
llvm-svn: 235012
This commit makes LLVM not estimate branch probabilities when doing a
single bit bitmask tests.
The code that originally made me discover this is:
if ((a & 0x1) == 0x1) {
..
}
In this case we don't actually have any branch probability information
and should not assume to have any. LLVM transforms this into:
%and = and i32 %a, 1
%tobool = icmp eq i32 %and, 0
So, in this case, the result of a bitwise and is compared against 0,
but nevertheless, we should not assume to have probability
information.
CodeGen/ARM/2013-10-11-select-stalls.ll started failing because the
changed probabilities changed the results of
ARMBaseInstrInfo::isProfitableToIfCvt() and led to an Ifcvt of the
diamond in the test. AFAICT, the test was never meant to test this and
thus changing the test input slightly to not change the probabilities
seems like the best way to preserve the meaning of the test.
llvm-svn: 234979
if ((a & 0x1) == 0x1) {
..
}
In this case we don't actually have any branch probability information and
should not assume to have any. LLVM transforms this into:
%and = and i32 %a, 1
%tobool = icmp eq i32 %and, 0
So, in this case, the result of a bitwise and is compared against 0,
but nevertheless, we should not assume to have probability
information.
llvm-svn: 234898
This pass will always try to insert llvm.SI.ifbreak intrinsics
in the same block that its conditional value is computed in. This is
a problem when conditions for breaks or continue are computed outside
of the loop, because the llvm.SI.ifbreak intrinsic ends up being inserted
outside of the loop.
This patch fixes this problem by inserting the llvm.SI.ifbreak
intrinsics in the loop header when the condition is computed outside
the loop.
llvm-svn: 234891
Combine something like:
(v8i8 concat_vectors (v2i8 bitcast (i16)) x4)
into:
(v8i8 (bitcast (v4i16 BUILD_VECTOR (i16) x4)))
If any of the scalars are floating point, use that throughout.
Differential Revision: http://reviews.llvm.org/D8948
llvm-svn: 234809
Revert "Remove default in fully-covered switch (to fix Clang -Werror -Wcovered-switch-default)"
Revert "R600: Add carry and borrow instructions. Use them to implement UADDO/USUBO"
Revert "LegalizeDAG: Try to use Overflow operations when expanding ADD/SUB"
Using overflow operations fails CodeGen/Generic/2011-07-07-ScheduleDAGCrash.ll
on hexagon, nvptx, and r600. Revert while I investigate.
llvm-svn: 234768
In case of different types used for the condition of the selects the
select(select) -> select(and) normalisation cannot be performed.
See also: http://reviews.llvm.org/D7622
llvm-svn: 234763
v2: tighten the sub64 tests
v3: rename to CARRY/BORROW
v4: fixup test cmdline
add known bits computation
use sign extend instead of sub 0,x
better add test
v5: remove redundant break
move lowering to separate functions
fix comments
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
Reviewers: arsenm
llvm-svn: 234759
Fill in the TODO in CodeGenPrepare::OptimizeCallInst so that global
variables that are passed to memory intrinsics are aligned in the same
way that allocas are.
Differential Revision: http://reviews.llvm.org/D8421
llvm-svn: 234735
When I fixed these a couple of days ago to iterate over all loops, not just
depth == 1 loops, I inadvertently made it such that we'd only look at the first
top-level loop. Make sure that we really look at all of them.
llvm-svn: 234705
As it turns out, even though these are part of ISA 2.06, the P7 does not
support them (or, at least, not any P7s we're tested so far).
llvm-svn: 234686
This patch corresponds to review:
http://reviews.llvm.org/D8928
It adds direct move instructions to/from VSX registers to GPR's. These are
exploited for FP <-> INT conversions.
llvm-svn: 234682
This pass had the same problem as the data-prefetching pass: it was only
checking for depth == 1 loops in practice. Fix that, add some debugging
statements, and make sure that, when we grab an AddRec, it is for the loop we
expect.
llvm-svn: 234670
Currently, there's a single flag, checked by the pass itself.
It can't force-enable the pass (and is on by default), because it
might not even have been created, as that's the targets decision.
Instead, have separate explicit flags, so that the decision is
consistently made in the target.
Keep the flag as a last-resort "force-disable GlobalMerge" for now,
for backwards compatibility.
llvm-svn: 234666
This allows winehprepare to build sensible llvm.eh.actions calls for SEH
finally blocks. The pattern matching in this change is brittle and
should be replaced with something more robust soon. In the meantime,
this will let us write the code that produces __C_specific_handler xdata
tables, which we need regardless of how we decide to get finally blocks
through EH preparation.
llvm-svn: 234663
Summary:
This change moves creating calls to `llvm.uadd.with.overflow` from
InstCombine to CodeGenPrep. Combining overflow check patterns into
calls to the said intrinsic in InstCombine inhibits optimization because
it introduces an intrinsic call that not all other transforms and
analyses understand.
Depends on D8888.
Reviewers: majnemer, atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8889
llvm-svn: 234638
WinEH currently turns invokes into calls. Long term, we will reconsider
this, but for now, make sure we remap the operands and clone the
successors of the new terminator.
llvm-svn: 234608
Iterating over loops from the LoopInfo instance only provides top-level loops.
We need to search the whole tree of loops to find the inner ones.
llvm-svn: 234603
When we have an instruction for this (and, thus, don't generate a runtime
call), we need to custom type legalize this (in a trivial way, just as we do
for fp_to_sint).
Fixes PR23173.
llvm-svn: 234561
For the most common ones (such as fadd), we already did the promotion.
Do the same thing for all the others.
Currently, we'll just crash/assert on all these operations, as
there's no hardware or libcall support whatsoever.
f16 (half) is specified as an interchange - not arithmetic - format,
and is expected to be promoted to single-precision for arithmetic
operations.
While there, teach the legalizer about promoting some of the (mostly
floating-point) operations that we never needed before.
Differential Revision: http://reviews.llvm.org/D8648
See related discussion on the thread for: http://reviews.llvm.org/D8755
llvm-svn: 234550
This is the patch corresponding to review:
http://reviews.llvm.org/D8406
It adds some missing instructions from ISA 2.06 to the PPC back end.
llvm-svn: 234546
We already do:
concat_vectors(scalar, undef) -> scalar_to_vector(scalar)
When the scalar is legal.
When it's not, but is a truncated legal scalar, we can also do:
concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar)
Which is equivalent, since the upper lanes are undef anyway.
While there, teach the combine to look at more than 2 operands.
Differential Revision: http://reviews.llvm.org/D8883
llvm-svn: 234530
The integer extend optimization tries to fold the extend into the load
instruction. This requires us to identify if the extend has already been
emitted or not and act accordingly on it.
The check that was originally performed for this was not sufficient. Besides
checking the ValueMap for a mapped register we also need to check if the
virtual register has already an associated machine instruction that defines it.
This fixes rdar://problem/20470788.
llvm-svn: 234529
Currently, llvm (backend) doesn't know cortex-r4, even though it is the
default target for armv7r. Using "--target=armv7r-arm-none-eabi" provokes
'cortex-r4' is not a recognized processor for this target' by llvm.
This patch adds support for cortex-r4 and, very closely related, r4f.
llvm-svn: 234486
restrictions when choosing a type for small-memcpy inlining in
SelectionDAGBuilder.
This ensures that the loads and stores output for the memcpy won't be further
expanded during legalization, which would cause the total number of instructions
for the memcpy to exceed (often significantly) the inlining thresholds.
<rdar://problem/17829180>
llvm-svn: 234462
The bug manifests when there are two loads and two stores chained as follows in
a DAG,
(ld v3f32) -> (st f32) -> (ld v3f32) -> (st f32)
and the stores' values are extracted from the preceding vector loads.
MergeConsecutiveStores would replace the first store in the chain with the
merged vector store, which would create a cycle between the merged store node
and the last load node that appears in the chain.
This commits fixes the bug by replacing the last store in the chain instead.
rdar://problem/20275084
Differential Revision: http://reviews.llvm.org/D8849
llvm-svn: 234430
Because -menable-no-nans causes fcmp conditions to be rewritten
without 'o' or 'u' the recognition code in needs to cope. Also
extended it to handle 'le' and 'ge.
Differential Revision: http://reviews.llvm.org/D8725
llvm-svn: 234421
Summary: Looks like new code from [[ http://reviews.llvm.org/rL222057 | rL222057 ]] doesn't account for early `return` in `ARMFrameLowering::emitPrologue`, which leads to loosing `.cfi_def_cfa_offset` directive for functions without stack frame.
Reviewers: echristo, rengolin, asl, t.p.northover
Reviewed By: t.p.northover
Subscribers: llvm-commits, rengolin, aemerson
Differential Revision: http://reviews.llvm.org/D8606
llvm-svn: 234399
Fast isel used to zero extends immediates to 64 bits. This normally goes
unnoticed because the value is truncated to 32 bits for output.
Two cases were it is noticed:
* We fail to use smaller encodings.
* If the original constant was smaller than i32.
In the tests using i1 constants, codegen would change to use -1, which is fine
(and matches what regular isel does) since only the lowest bit is then used.
Instead, this patch then changes the ir to use i8 constants, which looks more
like what clang produces.
llvm-svn: 234249
The uselist isn't enough to infer anything about the lifetime of such
allocas. If we want to re-add this optimization, we will need to
leverage lifetime markers to do it.
Fixes PR23122.
llvm-svn: 234196
This patch allows SSE4.1 targets to use (V)PINSRB to create 16i8 vectors by inserting i8 scalars directly into a XMM register instead of merging pairs of i8 scalars into a i16 and using the SSE2 PINSRW instruction.
This allows folding of byte loads and reduces scalar register usage as well.
Differential Revision: http://reviews.llvm.org/D8839
llvm-svn: 234193
This allows the compiler/assembly programmer to switch back to a
section. This in turn fixes the bootstrap failure on powerpc (tested
on gcc110) without changing the ppc codegen at all.
I will try to cleanup the various getELFSection overloads in a followup patch.
Just using a default argument now would lead to ambiguities.
llvm-svn: 234099
Previously the patterns didn't have high enough priority and we would only use the GR32 form if the only the upper 32 or 56 bits were zero.
Fixes PR23100.
llvm-svn: 234075