As indicated by the tests, it is possible to feed the AsmParser an
invalid datalayout string. We should verify the result of parsing this
string regardless of whether or not we have assertions enabled.
llvm-svn: 223898
We can't mark partially undefined registers, so we have to allow reading
a register in the machine verifier if just parts of a register are
defined.
llvm-svn: 223896
In the subregister liveness tracking case we do not create implicit
reads on partial register writes anymore, still we need to produce a new
SSA value for partial writes so the live segment has to end.
llvm-svn: 223895
Adding the implicit defs/uses to the superregisters is semantically questionable
but was not dangerous before as the register allocator never assigned the same
register to two overlapping LiveIntervals even when the actually live
subregisters do not overlap. With subregister liveness tracking enabled this
does actually happen and leads to subsequent bugs if we don't stop adding
the superregister defs/uses.
llvm-svn: 223892
We used to only combine intrinsics, and turn them into VLD1_UPD/VST1_UPD
when the base pointer is incremented after the load/store.
We can do the same thing for generic load/stores.
Note that we can only combine the first load/store+adds pair in
a sequence (as might be generated for a v16f32 load for instance),
because other combines turn the base pointer addition chain (each
computing the address of the next load, from the address of the last
load) into independent additions (common base pointer + this load's
offset).
Differential Revision: http://reviews.llvm.org/D6585
llvm-svn: 223862
In the current implementation, GCStrategy is a part of the ownership structure for the gc metadata which describes a Module. It also contains a reference to the module in question. As a result, GCStrategy instances are essentially Module specific.
I plan to transition away from this design. Instead, a GCStrategy will be owned by the LLVMContext. It will be a lightweight policy object which contains no information about the Modules or Functions involved, but can be easily reached given a Function.
The first step in this transition is to remove the direct Module reference from GCStrategy. This also requires removing the single user of this reference, the GCMetadataPrinter hierarchy. In theory, this will allow the lifetime of the printers to be scoped to the LLVMContext as well, but in practice, I'm not actually changing that. (Yet?)
An alternate design would have been to move the direct Module reference into the GCMetadataPrinter and change the keying of the owning maps to explicitly key off both GCStrategy and Module. I'm open to doing it that way instead, but didn't see much value in preserving the per Module association for GCMetadataPrinters.
The next change in this sequence will be to start unwinding the intertwined ownership between GCStrategy, GCModuleInfo, and GCFunctionInfo.
Differential Revision: http://reviews.llvm.org/D6566
llvm-svn: 223859
There were two major problems with `MDNode` memory management.
1. `MDNode::operator new()` called a placement array constructor for
`MDOperand`. What? Each operand needs to be placed individually.
2. `MDNode::operator delete()` failed to destruct the `MDOperand`s at
all.
Frankly it's hard to understand how this worked locally, how this
survived an LTO bootstrap, or how it worked on most of the bots.
llvm-svn: 223858
Move the combiner-state check into another function, add a few
small comments, and use a more general type in a cast<>.
In preparation for a future patch.
llvm-svn: 223834
It was missing from the VLD1/VST1 handling logic, even though the
corresponding instructions exist (same form as v2i64).
In preparation for a future patch.
llvm-svn: 223832
RAUW in a deterministic order to try to recover the hexagon bot [1],
whose tests started failing once my GCC fixes were in for r223802.
Otherwise, I'm not sure why tests would fail there and not here.
[1]: http://lab.llvm.org:8011/builders/llvm-hexagon-elf/builds/13426
llvm-svn: 223829
LLVM_EXPLICIT is only supported by recent version of MSVC, and it seems
the not-so-recent versions get confused about the operator bool() when
tryint to resolve operator== calls.
This removed the operator bool()'s since they don't seem to be used
anyway.
llvm-svn: 223824
The load/store value type is currently not available when lowering the memcpy
intrinsic. Add the missing nullptr check to support this in 'computeAddress'.
Fixes rdar://problem/19178947.
llvm-svn: 223818
patterns.
This is causing Clang to miscompile itself for 32-bit x86 somehow, and likely
also on ARM and PPC. I really don't know how, but reverting now that I've
confirmed this is actually the culprit. I have a reproduction as well and so
should be able to restore this shortly.
This reverts commit r223764.
Original commit log follows:
Teach instcombine to canonicalize "element extraction" from a load of an
integer and "element insertion" into a store of an integer into actual
element extraction, element insertion, and vector loads and stores.
Previously various parts of LLVM (including instcombine itself) would
introduce integer loads and stores into the code as a way of opaquely
loading and storing "bits". In some cases (such as a memcpy of
std::complex<float> object) we will eventually end up using those bits
in non-integer types. In order for SROA to effectively promote the
allocas involved, it splits these "store a bag of bits" integer loads
and stores up into the constituent parts. However, for non-alloca loads
and tsores which remain, it uses integer math to recombine the values
into a large integer to load or store.
All of this would be "fine", except that it forces LLVM to go through
integer math to combine and split up values. While this makes perfect
sense for integers (and in fact is critical for bitfields to end up
lowering efficiently) it is *terrible* for non-integer types, especially
floating point types. We have a much more canonical way of representing
the act of concatenating the bits of two SSA values in LLVM: a vector
and insertelement. This patch teaching InstCombine to use this
representation.
With this patch applied, LLVM will no longer introduce integer math into
the critical path of every loop over std::complex<float> operations such
as those that make up the hot path of ... oh, most HPC code, Eigen, and
any other heavy linear algebra library.
For the record, I looked *extensively* at fixing this in other parts of
the compiler, but it just doesn't work:
- We really do want to canonicalize memcpy and other bit-motion to
integer loads and stores. SSA values are tremendously more powerful
than "copy" intrinsics. Not doing this regresses massive amounts of
LLVM's scalar optimizer.
- We really do need to split up integer loads and stores of this form in
SROA or every memcpy of a trivially copyable struct will prevent SSA
formation of the members of that struct. It essentially turns off
SROA.
- The closest alternative is to actually split the loads and stores when
partitioning with SROA, but this has all of the downsides historically
discussed of splitting up loads and stores -- the wide-store
information is fundamentally lost. We would also see performance
regressions for bitfield-heavy code and other places where the
integers aren't really intended to be split without seemingly
arbitrary logic to treat integers totally differently.
- We *can* effectively fix this in instcombine, so it isn't that hard of
a choice to make IMO.
llvm-svn: 223813
Lowering patterns were written through avx512_broadcast_pat multiclass as pattern generates VBROADCAST and COPY_TO_REGCLASS nodes.
Added lowering tests.
llvm-svn: 223804
Split `Metadata` away from the `Value` class hierarchy, as part of
PR21532. Assembly and bitcode changes are in the wings, but this is the
bulk of the change for the IR C++ API.
I have a follow-up patch prepared for `clang`. If this breaks other
sub-projects, I apologize in advance :(. Help me compile it on Darwin
I'll try to fix it. FWIW, the errors should be easy to fix, so it may
be simpler to just fix it yourself.
This breaks the build for all metadata-related code that's out-of-tree.
Rest assured the transition is mechanical and the compiler should catch
almost all of the problems.
Here's a quick guide for updating your code:
- `Metadata` is the root of a class hierarchy with three main classes:
`MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from
the `Value` class hierarchy. It is typeless -- i.e., instances do
*not* have a `Type`.
- `MDNode`'s operands are all `Metadata *` (instead of `Value *`).
- `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be
replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively.
If you're referring solely to resolved `MDNode`s -- post graph
construction -- just use `MDNode*`.
- `MDNode` (and the rest of `Metadata`) have only limited support for
`replaceAllUsesWith()`.
As long as an `MDNode` is pointing at a forward declaration -- the
result of `MDNode::getTemporary()` -- it maintains a side map of its
uses and can RAUW itself. Once the forward declarations are fully
resolved RAUW support is dropped on the ground. This means that
uniquing collisions on changing operands cause nodes to become
"distinct". (This already happened fairly commonly, whenever an
operand went to null.)
If you're constructing complex (non self-reference) `MDNode` cycles,
you need to call `MDNode::resolveCycles()` on each node (or on a
top-level node that somehow references all of the nodes). Also,
don't do that. Metadata cycles (and the RAUW machinery needed to
construct them) are expensive.
- An `MDNode` can only refer to a `Constant` through a bridge called
`ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`).
As a side effect, accessing an operand of an `MDNode` that is known
to be, e.g., `ConstantInt`, takes three steps: first, cast from
`Metadata` to `ConstantAsMetadata`; second, extract the `Constant`;
third, cast down to `ConstantInt`.
The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have
metadata schema owners transition away from using `Constant`s when
the type isn't important (and they don't care about referring to
`GlobalValue`s).
In the meantime, I've added transitional API to the `mdconst`
namespace that matches semantics with the old code, in order to
avoid adding the error-prone three-step equivalent to every call
site. If your old code was:
MDNode *N = foo();
bar(isa <ConstantInt>(N->getOperand(0)));
baz(cast <ConstantInt>(N->getOperand(1)));
bak(cast_or_null <ConstantInt>(N->getOperand(2)));
bat(dyn_cast <ConstantInt>(N->getOperand(3)));
bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4)));
you can trivially match its semantics with:
MDNode *N = foo();
bar(mdconst::hasa <ConstantInt>(N->getOperand(0)));
baz(mdconst::extract <ConstantInt>(N->getOperand(1)));
bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2)));
bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3)));
bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4)));
and when you transition your metadata schema to `MDInt`:
MDNode *N = foo();
bar(isa <MDInt>(N->getOperand(0)));
baz(cast <MDInt>(N->getOperand(1)));
bak(cast_or_null <MDInt>(N->getOperand(2)));
bat(dyn_cast <MDInt>(N->getOperand(3)));
bay(dyn_cast_or_null<MDInt>(N->getOperand(4)));
- A `CallInst` -- specifically, intrinsic instructions -- can refer to
metadata through a bridge called `MetadataAsValue`. This is a
subclass of `Value` where `getType()->isMetadataTy()`.
`MetadataAsValue` is the *only* class that can legally refer to a
`LocalAsMetadata`, which is a bridged form of non-`Constant` values
like `Argument` and `Instruction`. It can also refer to any other
`Metadata` subclass.
(I'll break all your testcases in a follow-up commit, when I propagate
this change to assembly.)
llvm-svn: 223802