Summary:
Currently all type ids are emitted into the index file when it is
written. For distributed ThinLTO, that meant that all type ids were
being duplicated into every single distributed index file, regardless of
whether they were referenced, leading to huge amounts of unnecessary
duplication and size bloat.
Keep track of the type id GUIDs actually referenced by the GV summary
records being emitted, and only emit those type IDs.
Add a new test, and fix test/Assembler/thinlto-summary.ll so that all
type ids are referenced to prevent deletion in that test.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, vitalybuka, llvm-commits
Differential Revision: https://reviews.llvm.org/D49565
llvm-svn: 337503
Summary:
I noticed that the .imports files emitted for distributed ThinLTO
backends do not have consistent ordering. This is because StringMap
iteration order is not guaranteed to be deterministic. Since we already
have a std::map with this information, used when emitting the individual
index files (ModuleToSummariesForIndex), use it for the imports files as
well.
This issue is likely causing some unnecessary rebuilds of the ThinLTO
backends in our distributed build system as the imports files are inputs
to those backends.
Reviewers: pcc, steven_wu, mehdi_amini
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D48783
llvm-svn: 336721
Summary:
Rather than just print the GUID, when it is available in the index,
print the global name as well in the function import thin link debug
messages. Names will be available when the combined index is being
built by the same process, e.g. a linker or "llvm-lto2 run".
Reviewers: davidxl
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, llvm-commits
Differential Revision: https://reviews.llvm.org/D48612
llvm-svn: 335760
In order to set breakpoints on labels and list source code around
labels, we need collect debug information for labels, i.e., label
name, the function label belong, line number in the file, and the
address label located. In order to keep these information in LLVM
IR and to allow backend to generate debug information correctly.
We create a new kind of metadata for labels, DILabel. The format
of DILabel is
!DILabel(scope: !1, name: "foo", file: !2, line: 3)
We hope to keep debug information as much as possible even the
code is optimized. So, we create a new kind of intrinsic for label
metadata to avoid the metadata is eliminated with basic block.
The intrinsic will keep existing if we keep it from optimized out.
The format of the intrinsic is
llvm.dbg.label(metadata !1)
It has only one argument, that is the DILabel metadata. The
intrinsic will follow the label immediately. Backend could get the
label metadata through the intrinsic's parameter.
We also create DIBuilder API for labels to be used by Frontend.
Frontend could use createLabel() to allocate DILabel objects, and use
insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR.
Differential Revision: https://reviews.llvm.org/D45024
Patch by Hsiangkai Wang.
llvm-svn: 331841
This is PR36686.
If a user of a library is LTOed with that library we take the
opportunity to set dso_local, but we don't clear dllimport, which
creates an invalid IR.
llvm-svn: 327408
Summary:
If there's a callees metadata attached to the indirect call instruction, add CallGraphEdges to the callees mentioned in the metadata when computing FunctionSummary.
* Why this is necessary:
Consider following code example:
```
(foo.c)
static int f1(int x) {...}
static int f2(int x);
static int (*fptr)(int) = f2;
static int f2(int x) {
if (x) fptr=f1; return f1(x);
}
int foo(int x) {
(*fptr)(x); // !callees metadata of !{i32 (i32)* @f1, i32 (i32)* @f2} would be attached to this call.
}
(bar.c)
int bar(int x) {
return foo(x);
}
```
At LTO time when `foo.o` is imported into `bar.o`, function `foo` might be inlined into `bar` and PGO-guided indirect call promotion will run after that. If the profile data tells that the promotion of `@f1` or `@f2` is beneficial, the optimizer will check if the "promoted" `@f1` or `@f2` (such as `@f1.llvm.0` or `@f2.llvm.0`) is available. Without this patch, importing `!callees` metadata would only add promoted declarations of `@f1` and `@f2` to the `bar.o`, but still the optimizer will assume that the function is available and perform the promotion. The result of that is link failure with `undefined reference to @f1.llvm.0`.
This patch fixes this problem by adding callees in the `!callees` metadata to CallGraphEdges so that their definition would be properly imported into.
One may ask that there already is a logic to add indirect call promotion targets to be added to CallGraphEdges. However, if profile data says "indirect call promotion is only beneficial under a certain inline context", the logic wouldn't work. In the code example above, if profile data is like
```
bar:1000000:100000
1:100000
1: foo:100000
1: 100000 f1:100000
```
, Computing FunctionSummary for `foo.o` wouldn't add `foo->f1` to CallGraphEdges. (Also, it is at least "possible" that one can provide profile data to only link step but not to compilation step).
Reviewers: tejohnson, mehdi_amini, pcc
Reviewed By: tejohnson
Subscribers: inglorion, eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D44399
llvm-svn: 327358
This caused some links to fail with ThinLTO due to missing symbols as
well as causing some binaries to have failures at runtime. We're working
with the author to get a test case, but want to get the tree green
again.
Further, it appears to introduce a data race. While the test usage of
threads was disabled in r325361 & r325362, that isn't an acceptable fix.
I've reverted both of these as well. This code needs to be thread safe.
Test cases for this are already on the original commit thread.
llvm-svn: 326638
Summary:
This is exposed during ThinLTO compilation, when we import an alias by
creating a clone of the aliasee. Without this fix the debug type is
unnecessarily cloned and we get a duplicate, undoing the uniquing.
Fixes PR36089.
Reviewers: mehdi_amini, pcc
Subscribers: eraman, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D41669
llvm-svn: 323813
Summary:
With DebugTypeODRUniquing enabled, during IR linking debug metadata
in the destination module may be reached from the source module.
This means that ConstantAsMetadata nodes (e.g. on DITemplateValueParameter)
may contain a value the destination module. When trying to map such
metadata nodes, we will attempt to map a GV already in the dest module.
linkGlobalValueProto will end up with a source GV that is the same as
the dest GV as well as the new GV. Trying to access the TypeMap for the
source GV type, which is actually a dest GV type, hits an assertion
since it appears that we have mapped into the source module (because the
type is the value not a key into the map).
Detect that we don't need to access the TypeMap in this case, since
there is no need to create a bitcast from the new GV to the source GV
type as they GV are the same.
Fixes PR35722.
Reviewers: mehdi_amini, pcc
Subscribers: probinson, llvm-commits, eraman
Differential Revision: https://reviews.llvm.org/D41624
llvm-svn: 322103
Summary:
This implements a missing feature to allow importing of aliases, which
was previously disabled because alias cannot be available_externally.
We instead import an alias as a copy of its aliasee.
Some additional work was required in the IndexBitcodeWriter for the
distributed build case, to ensure that the aliasee has a value id
in the distributed index file (i.e. even when it is not being
imported directly).
This is a performance win in codes that have many aliases, e.g. C++
applications that have many constructor and destructor aliases.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D40747
llvm-svn: 320895
The current code that handles personality functions when creating a
module summary does not correctly handle the case where a function's
personality function operand refers to the function indirectly
(e.g. via a bitcast). This patch handles such cases by treating
personality function references like any other reference, i.e. by
adding them to the function's reference list. This has the minor side
benefit of allowing personality functions to participate in early
dead stripping.
We do this by calling findRefEdges on the function itself. This way
we also end up handling other function operands (specifically prefix
data and prologue data) for free.
Differential Revision: https://reviews.llvm.org/D37553
llvm-svn: 312698
This change simplifies code that has to deal with
DIGlobalVariableExpression and mirrors how we treat DIExpressions in
debug info intrinsics. Before this change there were two ways of
representing empty expressions on globals, a nullptr and an empty
!DIExpression().
If someone needs to upgrade out-of-tree testcases:
perl -pi -e 's/(!DIGlobalVariableExpression\(var: ![0-9]*)\)/\1, expr: !DIExpression())/g' <MYTEST.ll>
will catch 95%.
llvm-svn: 312144
This is PR33245.
Case I am fixing is next:
Imagine we have 2 BC files, one defines and uses personality routine,
second has only declaration and also uses it.
Previously algorithm computing dead symbols (llvm::computeDeadSymbols) did
not know about personality routines and leaved them dead even if function that
has routine was live.
As a result thinLTOInternalizeAndPromoteGUID() method changed binding for
such symbol to local. Later when LLD tried to link these objects it failed
because one object had undefined global symbol for routine and second
object contained local definition instead of global.
Patch set the live root flag on the corresponding FunctionSummary
for personality routines when we build the per-module summaries
during the compile step.
Differential revision: https://reviews.llvm.org/D36834
llvm-svn: 311432
Summary:
Fixed PR33966.
CFI code generation for users (not just callers) of a function depends
on whether this function has a jumptable entry or not. This
information needs to be encoded in of thinlto cache key.
We filter the jumptable list against functions that are actually
referenced in the current module.
Subscribers: mehdi_amini, inglorion, eraman, hiraditya
Differential Revision: https://reviews.llvm.org/D36346
llvm-svn: 310536
compatible target triple
Currently, an assertion fails in ThinLTOCodeGenerator::addModule when
the target triple of the module being added doesn't match that of the
one stored in TMBuilder. This patch relaxes the constraint and makes
changes to allow target triples that only differ in their version
numbers on Apple platforms, similarly to what r228999 did.
rdar://problem/30133904
Differential Revision: https://reviews.llvm.org/D33291
llvm-svn: 303326
This set may affect code generation and is sensitive to link order (and
possibly in the future to the linker's choice of prevailing symbol), so we
need to include it.
Differential Revision: https://reviews.llvm.org/D30586
llvm-svn: 296907
until we can get better TargetMachine::isCompatibleDataLayout to compare - otherwise
we can't code generate existing bitcode without a string equality data layout.
This reverts commit r294702.
llvm-svn: 294709
For other platforms we should find out what they need and likely
make the same change, however, a smaller additional change is easier
for platforms we know have it specified in the ABI. As part of this
rewrite some of the handling in the backends for data layout and update
a bunch of testcases.
Based on a patch by Simonas Kazlauskas!
llvm-svn: 294702
This reverts commit r293970.
After more discussion, this belongs to the linker side and
there is no added value to do it at this level.
llvm-svn: 293993
When a symbol is not exported outside of the
DSO, it is can be hidden. Usually we try to internalize
as much as possible, but it is not always possible, for
instance a symbol can be referenced outside of the LTO
unit, or there can be cross-module reference in ThinLTO.
This is a recommit of r293912 after fixing build failures,
and a recommit of r293918 after fixing LLD tests.
Differential Revision: https://reviews.llvm.org/D28978
llvm-svn: 293970
When a symbol is not exported outside of the
DSO, it is can be hidden. Usually we try to internalize
as much as possible, but it is not always possible, for
instance a symbol can be referenced outside of the LTO
unit, or there can be cross-module reference in ThinLTO.
This is a recommit of r293912 after fixing build failures.
Differential Revision: https://reviews.llvm.org/D28978
llvm-svn: 293918
When a symbol is not exported outside of the
DSO, it is can be hidden. Usually we try to internalize
as much as possible, but it is not always possible, for
instance a symbol can be referenced outside of the LTO
unit, or there can be cross-module reference in ThinLTO.
Differential Revision: https://reviews.llvm.org/D28978
llvm-svn: 293912
Summary:
The issue happens with:
%0 = ....., !tbaa !0
%1 = ....., !tbaa !1
With !0 that references !1.
In this case when loading !0 we generates a temporary for the
operand !1. We now flush it immediately and trigger the load of
!1 before moving on. If we don't we get the temporary when
attaching to %1. This is usually not an issue except that we
eagerly try to update TBAA MDNodes, which is obviously not possible
if we only have a temporary.
Differential Revision: https://reviews.llvm.org/D28423
llvm-svn: 291362
Summary:
r285871 introduced an assert that was overly aggressive in the case
of a same-named local in different same-named files (in different
directories), where the source name and therefore the GUID ended up
the same because the files were compiled in their own directory without
any leading path. Change the handling in the promotion logic to get
the summary for the version in that module.
This also exposed an issue where we are not always importing the
right copy, which is a performance not correctness issue (because
the renaming is based on the module hash which must be different,
see the bug report for details). I will fix that as a follow-on.
Fixes PR31561.
Reviewers: mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28411
llvm-svn: 291304
Summary:
Using the linker-supplied list of "preserved" symbols, we can compute
the list of "dead" symbols, i.e. the one that are not reachable from
a "preserved" symbol transitively on the reference graph.
Right now we are using this information to mark these functions as
non-eligible for import.
The impact is two folds:
- Reduction of compile time: we don't import these functions anywhere
or import the function these symbols are calling.
- The limited number of import/export leads to better internalization.
Patch originally by Mehdi Amini.
Reviewers: mehdi_amini, pcc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23488
llvm-svn: 291177
Summary:
This is a relatively simple scheme: we use the index emitted in the
bitcode to avoid loading all the global metadata. Instead we load
the index with their position in the bitcode so that we can load each
of them individually. Materializing the global metadata block in this
condition only triggers loading the named metadata, and the ones
referenced from there (transitively). When materializing a function,
metadata from the global block are loaded lazily as they are
referenced.
Two main current limitations are:
1) Global values other than functions are not materialized on demand,
so we need to eagerly load METADATA_GLOBAL_DECL_ATTACHMENT records
(and their transitive dependencies).
2) When we load a single metadata, we don't recurse on the operands,
instead we use a placeholder or a temporary metadata. Unfortunately
tepmorary nodes are very expensive. This is why we don't have it
always enabled and only for importing.
These two limitations can be lifted in a subsequent improvement if
needed.
With this change, the total link time of opt with ThinLTO and Debug
Info enabled is going down from 282s to 224s (~20%).
Reviewers: pcc, tejohnson, dexonsmith
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28113
llvm-svn: 291027
The effect of the bug was that we would incorrectly create summaries
for global and weak values defined in module asm (since we were
essentially testing for bit 1 which is SF_Undefined, and the
RecordStreamer ignores local undefined references). This would have
resulted in conservatively disabling importing of anything referencing
globals and weaks defined in module asm. Added these cases to the test
which now fails without this bug fix.
Fixes PR31459.
llvm-svn: 290610
This patch renumbers the metadata nodes in debug info testcases after
https://reviews.llvm.org/D26769. This is a separate patch because it
causes so much churn. This was implemented with a python script that
pipes the testcases through llvm-as - | llvm-dis - and then goes
through the original and new output side-by side to insert all
comments at a close-enough location.
Differential Revision: https://reviews.llvm.org/D27765
llvm-svn: 290292
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades and a change
to the Bitcode record for DIGlobalVariable, that makes upgrading the
old format unambiguous also for variables without DIExpressions.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 290153
Summary:
When reading the metadata bitcode, create a type declaration when
possible for composite types when we are importing. Doing this in
the bitcode reader saves memory. Also it works naturally in the case
when the type ODR map contains a definition for the same composite type
because it was used in the importing module (buildODRType will
automatically use the existing definition and not create a type
declaration).
For Chromium built with -g2, this reduces the aggregate size of the
generated native object files by 66% (from 31G to 10G). It reduced
the time through the ThinLTO link and backend phases by about 20% on
my machine.
Reviewers: mehdi_amini, dblaikie, aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27775
llvm-svn: 289993
This reverts commit 289920 (again).
I forgot to implement a Bitcode upgrade for the case where a DIGlobalVariable
has not DIExpression. Unfortunately it is not possible to safely upgrade
these variables without adding a flag to the bitcode record indicating which
version they are.
My plan of record is to roll the planned follow-up patch that adds a
unit: field to DIGlobalVariable into this patch before recomitting.
This way we only need one Bitcode upgrade for both changes (with a
version flag in the bitcode record to safely distinguish the record
formats).
Sorry for the churn!
llvm-svn: 289982
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 289920
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 289902
Summary:
We were reinvoking exportGlobalInModule numerous times redundantly.
No need to re-export globals referenced by a global that was already
imported from its module. This resulted in a large speedup in the thin
link for a big application, particularly when importing aggressiveness
was cranked up.
Reviewers: mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27687
llvm-svn: 289896
Also, udpate the ~60 failing tests in the tree which did
not contain a valid datalayout.
This fixes PR31123. lld will be updated in a following patch,
immediately after this is committed.
Differential Revision: https://reviews.llvm.org/D27082
llvm-svn: 289719
Summary:
As discussed on mailing list, for ThinLTO importing we don't need
to import all the fields of the DICompileUnit. Don't import enums,
macros, retained types lists. Also only import local scoped imported
entities. Since we don't currently import any global variables,
we also don't need to import the list of global variables (added an
assert to verify none are being imported).
This is being done by pre-populating the value map entries to map
the unneeded metadata to nullptr. For the imported entities, we can
simply replace the source module's list with a new list containing
only those needed imported entities. This is done in the IRLinker
constructor so that value mapping automatically does the desired
mapping.
Reviewers: mehdi_amini, dexonsmith, dblaikie, aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27635
llvm-svn: 289441
Summary:
We were doing an optimization in the ThinLTO backends of importing
constant unnamed_addr globals unconditionally as a local copy (regardless
of whether the thin link decided to import them). This should be done in
the thin link instead, so that resulting exported references are marked
and promoted appropriately, but will need a summary enhancement to mark
these variables as constant unnamed_addr.
The function import logic during the thin link was trying to handle
this proactively, by conservatively marking all values referenced in
the initializer lists of exported global variables as also exported.
However, this only handled values referenced directly from the
initializer list of an exported global variable. If the value is itself
a constant unnamed_addr variable, we could end up exporting its
references as well. This caused multiple issues. The first is that the
transitively exported references weren't promoted. Secondly, some could
not be promoted/renamed (e.g. they had a section or other constraint).
recursively, instead of just adding the first level of initializer list
references to the ExportList directly.
Remove this optimization and the associated handling in the function
import backend. SPEC measurements indicate we weren't getting much
from it in any case.
Fixes PR31052.
Reviewers: mehdi_amini
Subscribers: krasin, llvm-commits
Differential Revision: https://reviews.llvm.org/D26880
llvm-svn: 288446
It seems that because ThinLTO does not import the full module,
some invariant of the type mapper are broken.
In Monolithic LTO, we import every globals: when calling
IRLinker::copyFunctionProto() on @foo(), we end-up calling
TypeMapTy::get(FTy) on the type of @foo(), which will map
%0 and record the destination as opaque.
ThinLTO skips this because @foo is not imported and goes directly
to the next stage.
Next we call computeTypeMapping() that map the types for each
globals, and ends up checking for type isomorphism, and may add
type mapping. However it doesn't record if there was an opaque
destination type that was resolved.
Instead of lazily "discovering" opaque type in the destination
module on the go, we change the TypeFinder to eagerly record all
types and not only the named ones.
Differential Revision: https://reviews.llvm.org/D26840
llvm-svn: 287453
Summary:
This will also be added to the LTO API, right now this will
bring ThinLTO on par with Monolithic LTO on Darwin.
Reviewers: anemet
Subscribers: tejohnson, llvm-commits
Differential Revision: https://reviews.llvm.org/D26886
llvm-svn: 287450