As a part of adding the tiny codemodel, we need to support ldr's with :got:
relocations on them. This seems to be mostly already done, just needs the
relocation type support.
Differential Revision: https://reviews.llvm.org/D50137
llvm-svn: 338673
In expansion of FCOPYSIGN, the shift node is missing when the two
operands of FCOPYSIGN are of the same size. We should always generate
shift node (if the required shift bit is not zero) to put the sign
bit into the right position, regardless of the size of underlying
types.
Differential Revision: https://reviews.llvm.org/D49973
llvm-svn: 338665
Adding the FP_ROUND nodes when combining FP_TO_[SU]INT of elements
feeding a BUILD_VECTOR into an FP_TO_[SU]INT of the built vector
loses precision. This patch removes the code that adds these nodes
to true f64 operands. It also adds patterns required to ensure
the code is still vectorized rather than converting individual
elements and inserting into a vector.
Fixes https://bugs.llvm.org/show_bug.cgi?id=38342
Differential Revision: https://reviews.llvm.org/D50121
llvm-svn: 338658
AArch64 ELF ABI does not define a static relocation type for TLS offset within
a module, which makes it impossible for compiler to generate a valid
DW_AT_location content for thread local variables. Currently LLVM generates an
invalid R_AARCH64_ABS64 relocation at the DW_AT_location field for a TLS
variable. That causes trouble for linker because thread local variable does
not have an absolute address at link time. AArch64 GCC solves the problem by
not generating DW_AT_location for thread local variables. We should do the
same in LLVM.
Differential Revision: https://reviews.llvm.org/D43860
llvm-svn: 338655
(Previously reverted in r338442)
I'm told that the breakage came from us using an x86 triple on configs
that didn't have x86 enabled. This is remedied by moving the
debugcounter test to an x86 directory (where there's also a
opt-bisect-isel.ll test for similar reasons).
I can't repro the reverse-iteration failure mentioned in the revert with
this patch, so I assume that a misconfiguration on my end is what caused
that.
Original commit message:
Add DebugCounters to DivRemPairs
For people who don't use DebugCounters, NFCI.
Patch by Zhizhou Yang!
Differential Revision: https://reviews.llvm.org/D50033
llvm-svn: 338653
Mutate the node type during selection when it
doesn't matter. This avoids an intermediate bitcast
node on targets with legal i16/f16.
Also fixes missing output modifiers on v_cvt_pkrtz_f32_f16,
which I assume are OK.
llvm-svn: 338619
Summary:
Added an option that allows to emit only '.loc' and '.file' kind debug
directives, but disables emission of the DWARF sections. Required for
NVPTX target to support profiling. It requires '.loc' and '.file'
directives, but does not require any DWARF sections for the profiler.
Reviewers: probinson, echristo, dblaikie
Subscribers: aprantl, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D46021
llvm-svn: 338616
We now emit a move of -1 before the cmov and do the addition after the cmov just like the case with an extra addition.
This may be slightly worse for code size, but is more consistent with other compilers. And we might be able to hoist the mov -1 outside of loops.
llvm-svn: 338613
After we detected the presence of a template via ?$ we would proceed by
only demangling a simple unqualified name. This means we would fail on
templated operators (and perhaps other yet-to-be-determined things)
This was discovered while doing some refactoring to store richer
semantic information about the demangled types to pave the way for
overhauling the way we handle backreferences. (Specifically, we need to
defer recording or resolving back-references until a symbol has been
completely demangled, because we need to use information that only
occurs later in the mangled string to decide whether a back-reference
should be recorded.)
Differential Revision: https://reviews.llvm.org/D50145
llvm-svn: 338608
Summary:
D25878, which added support for !absolute_symbol for normal X86 ISel,
did not add support for materializing references to absolute symbols for
X86 FastISel. This causes build failures because FastISel generates
PC-relative relocations for absolute symbols. Fall back to normal ISel
for references to !absolute_symbol GVs. Fix for PR38200.
Reviewers: pcc, craig.topper
Reviewed By: pcc
Subscribers: hiraditya, llvm-commits, kcc
Differential Revision: https://reviews.llvm.org/D50116
llvm-svn: 338599
I've put CMPXCHG8B/CMPXCHG16B in the same file, even though technically they are under separate CPUID bits all targets seem to support both (or neither).
llvm-svn: 338595
The bug is visible in the constant-folded x86 tests. We can't use the
negated shift amount when the type is not power-of-2:
https://rise4fun.com/Alive/US1r
...so in that case, use the regular lowering that includes a select
to guard against a shift-by-bitwidth. This path is improved by only
calculating the modulo shift amount once now.
Also, improve the rotate (with power-of-2 size) lowering to use
a negate rather than subtract from bitwidth. This improves the
codegen whether we have a rotate instruction or not (although
we can still see that we're not matching to a legal rotate in
all cases).
llvm-svn: 338592
Summary:
Add support for --rename-section flags from gnu objcopy.
Not all flags appear to have an effect for ELF objects, but allowing them would allow easier drop-in replacement. Other unrecognized flags are rejected.
This was only tested by comparing flags printed by "readelf -e <.o>" against the output of gnu vs llvm objcopy, it hasn't been tested to be valid beyond that.
Reviewers: jakehehrlich, alexshap
Subscribers: llvm-commits, paulsemel, alexshap
Differential Revision: https://reviews.llvm.org/D49870
llvm-svn: 338582
Clang support for the Armv8.2-A FP16 vector intrinsic was committed in
rC328277, but this was never followed up, i.e. the LLVM part is missing.
I've raised PR38404, and this is the first step to address this. I.e.,
this adds tests for the Armv8.2-A FP16 vector intrinsic, and thus shows
which intrinsics already work, and which need further work.
Differential Revision: https://reviews.llvm.org/D50142
llvm-svn: 338568
Getting the DWARF types section is only implemented for ELF object
files. We already disabled emitting debug types in clang (r337717), but
now we also report an fatal error (rather than crashing) when trying to
obtain this section in MC. Additionally we ignore the generate debug
types flag for unsupported target triples.
See PR38190 for more information.
Differential revision: https://reviews.llvm.org/D50057
llvm-svn: 338527
Summary:
Add _L to _LZ image intrinsic table mapping to table gen.
In ISelLowering check if image intrinsic has lod and if it's equal
to zero, if so remove lod and change opcode to equivalent mapped _LZ.
Change-Id: Ie24cd7e788e2195d846c7bd256151178cbb9ec71
Subscribers: arsenm, mehdi_amini, kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D49483
llvm-svn: 338523
The DAG combiner logic to simplify AND masks in shift counts is invalid.
While it is true that the SystemZ shift instructions ignore all but the
low 6 bits of the shift count, it is still invalid to simplify the AND
masks while the DAG still uses the standard shift operators (which are
*not* defined to match the SystemZ instruction behavior).
Instead, this patch performs equivalent operations during instruction
selection. For completely removing the AND, this now happens via
additional DAG match patterns implemented by a multi-alternative
PatFrags. For simplifying a 32-bit AND to a 16-bit AND, the existing DAG
patterns were already mostly OK, they just needed an output XForm to
actually truncate the immediate value.
Unfortunately, the latter change also exposed a bug in TableGen: it
seems XForms are currently only handled correctly for direct operands of
the outermost operation node. This patch also fixes that bug by simply
recurring through the whole pattern. This should be NFC for all other
targets.
Differential Revision: https://reviews.llvm.org/D50096
llvm-svn: 338521
Summary:
This patch improves Inliner to provide causes/reasons for negative inline decisions.
1. It adds one new message field to InlineCost to report causes for Always and Never instances. All Never and Always instantiations must provide a simple message.
2. Several functions that used to return the inlining results as boolean are changed to return InlineResult which carries the cause for negative decision.
3. Changed remark priniting and debug output messages to provide the additional messages and related inline cost.
4. Adjusted tests for changed printing.
Patch by: yrouban (Yevgeny Rouban)
Reviewers: craig.topper, sammccall, sgraenitz, NutshellySima, shchenz, chandlerc, apilipenko, javed.absar, tejohnson, dblaikie, sanjoy, eraman, xbolva00
Reviewed By: tejohnson, xbolva00
Subscribers: xbolva00, llvm-commits, arsenm, mehdi_amini, eraman, haicheng, steven_wu, dexonsmith
Differential Revision: https://reviews.llvm.org/D49412
llvm-svn: 338494
This revision implements support for generating DWARFv5 .debug_addr section.
The implementation is pretty straight-forward: we just check the dwarf version
and emit section header if needed.
Reviewers: aprantl, dblaikie, probinson
Reviewed by: dblaikie
Differential Revision: https://reviews.llvm.org/D50005
llvm-svn: 338487
This patch intends to enable jump threading when a method whose return type is std::pair<int, bool> or std::pair<bool, int> is inlined.
For example, jump threading does not happen for the if statement in func.
std::pair<int, bool> callee(int v) {
int a = dummy(v);
if (a) return std::make_pair(dummy(v), true);
else return std::make_pair(v, v < 0);
}
int func(int v) {
std::pair<int, bool> rc = callee(v);
if (rc.second) {
// do something
}
SROA executed before the method inlining replaces std::pair by i64 without splitting in both callee and func since at this point no access to the individual fields is seen to SROA.
After inlining, jump threading fails to identify that the incoming value is a constant due to additional instructions (like or, and, trunc).
This series of patch add patterns in InstructionSimplify to fold extraction of members of std::pair. To help jump threading, actually we need to optimize the code sequence spanning multiple BBs.
These patches does not handle phi by itself, but these additional patterns help NewGVN pass, which calls instsimplify to check opportunities for simplifying instructions over phi, apply phi-of-ops optimization to result in successful jump threading.
SimplifyDemandedBits in InstCombine, can do more general optimization but this patch aims to provide opportunities for other optimizers by supporting a simple but common case in InstSimplify.
This first patch in the series handles code sequences that merges two values using shl and or and then extracts one value using lshr.
Differential Revision: https://reviews.llvm.org/D48828
llvm-svn: 338485
EFLAGS copy lowering.
If you have a branch of LLVM, you may want to cherrypick this. It is
extremely unlikely to hit this case empirically, but it will likely
manifest as an "impossible" branch being taken somewhere, and will be
... very hard to debug.
Hitting this requires complex conditions living across complex control
flow combined with some interesting memory (non-stack) initialized with
the results of a comparison. Also, because you have to arrange for an
EFLAGS copy to be in *just* the right place, almost anything you do to
the code will hide the bug. I was unable to reduce anything remotely
resembling a "good" test case from the place where I hit it, and so
instead I have constructed synthetic MIR testing that directly exercises
the bug in question (as well as the good behavior for completeness).
The issue is that we would mistakenly assume any SETcc with a valid
condition and an initial operand that was a register and a virtual
register at that to be a register *defining* SETcc...
It isn't though....
This would in turn cause us to test some other bizarre register,
typically the base pointer of some memory. Now, testing this register
and using that to branch on doesn't make any sense. It even fails the
machine verifier (if you are running it) due to the wrong register
class. But it will make it through LLVM, assemble, and it *looks*
fine... But wow do you get a very unsual and surprising branch taken in
your actual code.
The fix is to actually check what kind of SETcc instruction we're
dealing with. Because there are a bunch of them, I just test the
may-store bit in the instruction. I've also added an assert for sanity
that ensure we are, in fact, *defining* the register operand. =D
llvm-svn: 338481
we aren't incorrectly generating any of it when doing SLH.
There was a bug that only occured with SLH that very much looked like it
could be caused by bad unwind info, and so this was a prime suspect.
Turns out that everything is fine, but this way we'll *see* if we end
up, for example, putting things we shouldn't inside the prolog.
llvm-svn: 338480
It is necessary to generate fixups in .debug_line as relaxation is
enabled due to the address delta may be changed after relaxation.
DWARF will record the mappings of lines and addresses in
.debug_line section. It will encode the information using special
opcodes, standard opcodes and extended opcodes in Line Number
Program. I use DW_LNS_fixed_advance_pc to encode fixed length
address delta and DW_LNE_set_address to encode absolute address
to make it possible to generate fixups in .debug_line section.
Differential Revision: https://reviews.llvm.org/D46850
llvm-svn: 338477
Previously we were just visiting the blocks in the function in IR order, which
is rather arbitrary. Therefore we wouldn't always visit defs before uses, but
the translation code relies on this assumption in some places.
Only codegen change seen in tests is an elision of a redundant copy.
Fixes PR38396
llvm-svn: 338476