Commit Graph

233 Commits

Author SHA1 Message Date
Chandler Carruth 18db795b05 Rework the rewriting of loads and stores for vector and integer allocas
to properly handle the combinations of these with split integer loads
and stores. This essentially replaces Evan's r168227 by refactoring the
code in a different way, and trynig to mirror that refactoring in both
the load and store sides of the rewriting.

Generally speaking there was some really problematic duplicated code
here that led to poorly founded assumptions and then subtle bugs. Now
much of the code actually flows through and follows a more consistent
style and logical path. There is still a tiny bit of duplication on the
store side of things, but it is much less bad.

This also changes the logic to never re-use a load or store instruction
as that was simply too error prone in practice.

I've added a few tests (one a reduction of the one in Evan's original
patch, which happened to be the same as the report in PR14349). I'm
going to look at adding a few more tests for things I found and fixed in
passing (such as the volatile tests in the vectorizable predicate).

This patch has survived bootstrap, and modulo one bugfix survived
Duncan's test suite, but let me know if anything else explodes.

llvm-svn: 168346
2012-11-20 01:12:50 +00:00
Evan Cheng f1b6177b62 Teach SROA rewriteVectorizedStoreInst to handle cases when the loaded value is narrower than the stored value. rdar://12713675
llvm-svn: 168227
2012-11-17 00:05:06 +00:00
Chandler Carruth 5da3f0512e Revert the majority of the next patch in the address space series:
r165941: Resubmit the changes to llvm core to update the functions to
         support different pointer sizes on a per address space basis.

Despite this commit log, this change primarily changed stuff outside of
VMCore, and those changes do not carry any tests for correctness (or
even plausibility), and we have consistently found questionable or flat
out incorrect cases in these changes. Most of them are probably correct,
but we need to devise a system that makes it more clear when we have
handled the address space concerns correctly, and ideally each pass that
gets updated would receive an accompanying test case that exercises that
pass specificaly w.r.t. alternate address spaces.

However, from this commit, I have retained the new C API entry points.
Those were an orthogonal change that probably should have been split
apart, but they seem entirely good.

In several places the changes were very obvious cleanups with no actual
multiple address space code added; these I have not reverted when
I spotted them.

In a few other places there were merge conflicts due to a cleaner
solution being implemented later, often not using address spaces at all.
In those cases, I've preserved the new code which isn't address space
dependent.

This is part of my ongoing effort to clean out the partial address space
code which carries high risk and low test coverage, and not likely to be
finished before the 3.2 release looms closer. Duncan and I would both
like to see the above issues addressed before we return to these
changes.

llvm-svn: 167222
2012-11-01 09:14:31 +00:00
Chandler Carruth 7ec5085e01 Revert the series of commits starting with r166578 which introduced the
getIntPtrType support for multiple address spaces via a pointer type,
and also introduced a crasher bug in the constant folder reported in
PR14233.

These commits also contained several problems that should really be
addressed before they are re-committed. I have avoided reverting various
cleanups to the DataLayout APIs that are reasonable to have moving
forward in order to reduce the amount of churn, and minimize the number
of commits that were reverted. I've also manually updated merge
conflicts and manually arranged for the getIntPtrType function to stay
in DataLayout and to be defined in a plausible way after this revert.

Thanks to Duncan for working through this exact strategy with me, and
Nick Lewycky for tracking down the really annoying crasher this
triggered. (Test case to follow in its own commit.)

After discussing with Duncan extensively, and based on a note from
Micah, I'm going to continue to back out some more of the more
problematic patches in this series in order to ensure we go into the
LLVM 3.2 branch with a reasonable story here. I'll send a note to
llvmdev explaining what's going on and why.

Summary of reverted revisions:

r166634: Fix a compiler warning with an unused variable.
r166607: Add some cleanup to the DataLayout changes requested by
         Chandler.
r166596: Revert "Back out r166591, not sure why this made it through
         since I cancelled the command. Bleh, sorry about this!
r166591: Delete a directory that wasn't supposed to be checked in yet.
r166578: Add in support for getIntPtrType to get the pointer type based
         on the address space.
llvm-svn: 167221
2012-11-01 08:07:29 +00:00
Jakub Staszak 4e45abf0ae Don't insert and erase load instruction. Simply create (new) and delete it.
llvm-svn: 167196
2012-11-01 01:10:43 +00:00
Chandler Carruth 1296b59522 Fix PR14212: For some strange reason I treated vectors differently from
integers in that the code to handle split alloca-wide integer loads or
stores doesn't come first. It should, for the same reasons as with
integers, and the PR attests to that. Also had to fix a busted assert in
that this test case also covers.

llvm-svn: 167051
2012-10-30 20:52:40 +00:00
Chandler Carruth 58d0556765 Teach SROA how to split whole-alloca integer loads and stores into
smaller integer loads and stores.

The high-level motivation is that the frontend sometimes generates
a single whole-alloca integer load or store during ABI lowering of
splittable allocas. We need to be able to break this apart in order to
see the underlying elements and properly promote them to SSA values. The
hope is that this fixes some performance regressions on x86-32 with the
new SROA pass.

Unfortunately, this causes quite a bit of churn in the test cases, and
bloats some IR that comes out. When we see an alloca that consists soley
of bits and bytes being extracted and re-inserted, we now do some
splitting first, before building widened integer "bucket of bits"
representations. These are always well folded by instcombine however, so
this shouldn't actually result in missed opportunities.

If this splitting of all-integer allocas does cause problems (perhaps
due to smaller SSA values going into the RA), we could potentially go to
some extreme measures to only do this integer splitting trick when there
are non-integer component accesses of an alloca, but discovering this is
quite expensive: it adds yet another complete walk of the recursive use
tree of the alloca.

Either way, I will be watching build bots and LNT bots to see what
fallout there is here. If anyone gets x86-32 numbers before & after this
change, I would be very interested.

llvm-svn: 166662
2012-10-25 04:37:07 +00:00
Micah Villmow bf3eeb2dfc Add some cleanup to the DataLayout changes requested by Chandler.
llvm-svn: 166607
2012-10-24 18:36:13 +00:00
Micah Villmow 51e7246cb4 Back out r166591, not sure why this made it through since I cancelled the command. Bleh, sorry about this!
llvm-svn: 166596
2012-10-24 17:25:11 +00:00
Micah Villmow 6a8f3f9e20 Delete a directory that wasn't supposed to be checked in yet.
llvm-svn: 166591
2012-10-24 17:20:04 +00:00
Benjamin Kramer 7ddd70527c SROA: Simplify code. No functionality change.
llvm-svn: 166375
2012-10-20 12:04:57 +00:00
Chandler Carruth 59ff93afe6 Refactor insert and extract of sub-integers into static helpers that
operate purely on values. Sink the alloca loading and storing logic into
the rewrite routines that are specific to alloca-integer-rewrite
driving. This is just a refactoring here, but the subsequent step will
be to reuse the insertion and extraction logic when rewriting integer
loads and stores that have been split and decomposed into narrower loads
and stores.

No functionality changed other than different names for instructions.

llvm-svn: 166176
2012-10-18 09:56:08 +00:00
Chandler Carruth e793a50f45 This FIXME was fixed some time ago. =]
llvm-svn: 166175
2012-10-18 09:56:06 +00:00
Chandler Carruth 6fab42aa39 This just in, it is a *bad idea* to use 'udiv' on an offset of
a pointer. A very bad idea. Let's not do that. Fixes PR14105.

Note that this wasn't *that* glaring of an oversight. Originally, these
routines were only called on offsets within an alloca, which are
intrinsically positive. But over the evolution of the pass, they ended
up being called for arbitrary offsets, and things went downhill...

llvm-svn: 166095
2012-10-17 09:23:48 +00:00
Chandler Carruth 40617f593e Fix a really annoying "bug" introduced in r165941. The change from that
revision makes no sense. We cannot use the address space of the *post
indexed* type to conclude anything about a *pre indexed* pointer type's
size. More importantly, this index can never be over a pointer. We are
indexing over arrays and vectors here.

Of course, I have no test case here. Neither did the original patch. =/

llvm-svn: 166091
2012-10-17 07:22:16 +00:00
Micah Villmow 4bb926d91d Resubmit the changes to llvm core to update the functions to support different pointer sizes on a per address space basis.
llvm-svn: 165941
2012-10-15 16:24:29 +00:00
Chandler Carruth 49c8eea3c0 Update the memcpy rewriting to fully support widened int rewriting. This
includes extracting ints for copying elsewhere and inserting ints when
copying into the alloca. This should fix the CanSROA assertion coming
out of Clang's regression test suite.

llvm-svn: 165931
2012-10-15 10:24:43 +00:00
Chandler Carruth 9d966a2002 Follow-up fix to r165928: handle memset rewriting for widened integers,
and generally clean up the memset handling. It had rotted a bit as the
other rewriting logic got polished more.

llvm-svn: 165930
2012-10-15 10:24:40 +00:00
Chandler Carruth 435c4e0792 First major step toward addressing PR14059. This teaches SROA to handle
cases where we have partial integer loads and stores to an otherwise
promotable alloca to widen[1] those loads and stores to cover the entire
alloca and bitcast them into the appropriate type such that promotion
can proceed.

These partial loads and stores stem from an annoying confluence of ARM's
calling convention and ABI lowering and the FCA pre-splitting which
takes place in SROA. Clang lowers a { double, double } in-register
function argument as a [4 x i32] function argument to ensure it is
placed into integer 32-bit registers (a really unnerving implicit
contract between Clang and the ARM backend I would add). This results in
a FCA load of [4 x i32]* from the { double, double } alloca, and SROA
decomposes this into a sequence of i32 loads and stores. Inlining
proceeds, code gets folded, but at the end of the day, we still have i32
stores to the low and high halves of a double alloca. Widening these to
be i64 operations, and bitcasting them to double prior to loading or
storing allows promotion to proceed for these allocas.

I looked quite a bit changing the IR which Clang produces for this case
to be more friendly, but small changes seem unlikely to help. I think
the best representation we could use currently would be to pass 4 i32
arguments thereby avoiding any FCAs, but that would still require this
fix. It seems like it might eventually be nice to somehow encode the ABI
register selection choices outside of the parameter type system so that
the parameter can be a { double, double }, but the CC register
annotations indicate that this should be passed via 4 integer registers.

This patch does not address the second problem in PR14059, which is the
reverse: when a struct alloca is loaded as a *larger* single integer.

This patch also does not address some of the code quality issues with
the FCA-splitting. Those don't actually impede any optimizations really,
but they're on my list to clean up.

[1]: Pedantic footnote: for those concerned about memory model issues
here, this is safe. For the alloca to be promotable, it cannot escape or
have any use of its address that could allow these loads or stores to be
racing. Thus, widening is always safe.

llvm-svn: 165928
2012-10-15 08:40:30 +00:00
Chandler Carruth aa6afbb831 Hoist the canConvertValue predicate and the convertValue transform out
into static helper functions. They're really quite generic and are going
to be needed elsewhere shortly.

llvm-svn: 165927
2012-10-15 08:40:22 +00:00
Chandler Carruth ba9319925e Teach SROA to cope with wrapper aggregates. These show up a lot in ABI
type coercion code, especially when targetting ARM. Things like [1
x i32] instead of i32 are very common there.

The goal of this logic is to ensure that when we are picking an alloca
type, we look through such wrapper aggregates and across any zero-length
aggregate elements to find the simplest type possible to form a type
partition.

This logic should (generally speaking) rarely fire. It only ends up
kicking in when an alloca is accessed using two different types (for
instance, i32 and float), and the underlying alloca type has wrapper
aggregates around it. I noticed a significant amount of this occurring
looking at stepanov_abstraction generated code for arm, and suspect it
happens elsewhere as well.

Note that this doesn't yet address truly heinous IR productions such as
PR14059 is concerning. Those result in mismatched *sizes* of types in
addition to mismatched access and alloca types.

llvm-svn: 165870
2012-10-13 10:49:33 +00:00
Chandler Carruth 482c61787c Speculatively harden the conversion logic. I have no idea if this will
help the dragonegg builders, and no test case at this point, but this
was one dimly plausible case I spotted by inspection. Hopefully will get
a testcase from those bots soon-ish, and will tidy this up with proper
testing.

llvm-svn: 165869
2012-10-13 10:49:30 +00:00
Chandler Carruth 0fb8a7787e Silence a warning in -assert builds.
llvm-svn: 165867
2012-10-13 05:09:27 +00:00
Chandler Carruth 891fec0b56 Clean up how we rewrite loads and stores to the whole alloca. When these
are single value types, the load and store should be directly based upon
the alloca and then bitcasting can fix the type as needed afterward.
This might in theory improve some of the IR coming out of SROA, but
I don't expect big changes yet and don't have any test cases on hand.
This is really just a cleanup/refactoring patch. The next patch will
cause this code path to be hit a lot more, actually get SROA to promote
more allocas and include several more test cases.

llvm-svn: 165864
2012-10-13 02:41:05 +00:00
Micah Villmow 0c61134d8d Revert 165732 for further review.
llvm-svn: 165747
2012-10-11 21:27:41 +00:00
Micah Villmow 083189730e Add in the first iteration of support for llvm/clang/lldb to allow variable per address space pointer sizes to be optimized correctly.
llvm-svn: 165726
2012-10-11 17:21:41 +00:00
Chandler Carruth 503eb2bb49 Fix PR14034, an infloop / heap corruption / crash bug in the new SROA.
Thanks to Benjamin for the raw test case. This one took about 50 times
longer to reduce than to fix. =/

llvm-svn: 165476
2012-10-09 01:58:35 +00:00
Micah Villmow cdfe20b97f Move TargetData to DataLayout.
llvm-svn: 165402
2012-10-08 16:38:25 +00:00
NAKAMURA Takumi 605fe78aca SROA.cpp: Fix a warning, [-Wunused-variable]
llvm-svn: 165309
2012-10-05 13:56:23 +00:00
Chandler Carruth e5b7a2ccd2 Teach the new SROA a new trick. Now we zap any memcpy or memmoves which
are in fact identity operations. We detect these and kill their
partitions so that even splitting is unaffected by them. This is
particularly important because Clang relies on emitting identity memcpy
operations for struct copies, and these fold away to constants very
often after inlining.

Fixes the last big performance FIXME I have on my plate.

llvm-svn: 165285
2012-10-05 01:29:09 +00:00
Chandler Carruth 90c4a3ae20 Lift the speculation visitor above all the helpers that are targeted at
the rewrite visitor to make the fact that the speculation is completely
independent a bit more clear.

I promise that this is just a cut/paste of the one visitor and adding
the annonymous namespace wrappings. The diff may look completely
preposterous, it does in git for some reason.

llvm-svn: 165284
2012-10-05 01:29:06 +00:00
Chandler Carruth ac8317fd36 Fix PR13969, a mini-phase-ordering issue with the new SROA pass.
Currently, we re-visit allocas when something changes about the way they
might be *split* to allow better scalarization to take place. However,
we weren't handling the case when the *promotion* is what would change
the behavior of SROA. When an address derived from an alloca is stored
into another alloca, we consider the first to have escaped. If the
second is ever promoted to an SSA value, we will suddenly be able to run
the SROA pass on the first alloca.

This patch adds explicit support for this form if iteration. When we
detect a store of a pointer derived from an alloca, we flag the
underlying alloca for reprocessing after promotion. The logic works hard
to only do this when there is definitely going to be promotion and it
might remove impediments to the analysis of the alloca.

Thanks to Nick for the great test case and Benjamin for some sanity
check review.

llvm-svn: 165223
2012-10-04 12:33:50 +00:00
Chandler Carruth 43c8b46deb Teach the integer-promotion rewrite strategy to be endianness aware.
Sorry for this being broken so long. =/

As part of this, switch all of the existing tests to be Little Endian,
which is the behavior I was asserting in them anyways! Add in a new
big-endian test that checks the interesting behavior there.

Another part of this is to tighten the rules abotu when we perform the
full-integer promotion. This logic now rejects cases where there fully
promoted integer is a non-multiple-of-8 bitwidth or cases where the
loads or stores touch bits which are in the allocated space of the
alloca but are not loaded or stored when accessing the integer. Sadly,
these aren't really observable today as the rest of the pass will
already ensure the invariants hold. However, the latter situation is
likely to become a potential concern in the future.

Thanks to Benjamin and Duncan for early review of this patch. I'm still
looking into whether there are further endianness issues, please let me
know if anyone sees BE failures persisting past this.

llvm-svn: 165219
2012-10-04 10:39:28 +00:00
Chandler Carruth 08e5f49f90 Fix an issue where we failed to adjust the alignment constraint on
a memcpy to reflect that '0' has a different meaning when applied to
a load or store. Now we correctly use underaligned loads and stores for
the test case added.

llvm-svn: 165101
2012-10-03 08:26:28 +00:00
Chandler Carruth 4b2b38d398 Try to use a better set of abstractions for computing the alignment
necessary during rewriting. As part of this, fix a real think-o here
where we might have left off an alignment specification when the address
is in fact underaligned. I haven't come up with any way to trigger this,
as there is always some other factor that reduces the alignment, but it
certainly might have been an observable bug in some way I can't think
of. This also slightly changes the strategy for placing explicit
alignments on loads and stores to only do so when the alignment does not
match that required by the ABI. This causes a few redundant alignments
to go away from test cases.

I've also added a couple of tests that really push on the alignment that
we end up with on loads and stores. More to come here as I try to fix an
underlying bug I have conjectured and produced test cases for, although
it's not clear if this bug is the one currently hitting dragonegg's
gcc47 bootstrap.

llvm-svn: 165100
2012-10-03 08:14:02 +00:00
Chandler Carruth 3f57b82979 Switch the SetVector::remove_if implementation to use partition which
preserves the values of the relocated entries, unlikely remove_if. This
allows walking them and erasing them.

Also flesh out the predicate we are using for this to support the
various constraints actually imposed on a UnaryPredicate -- without this
we can't compose it with std::not1.

Thanks to Sean Silva for the review here and noticing the issue with
std::remove_if.

llvm-svn: 165073
2012-10-03 00:03:00 +00:00
Chandler Carruth b09f0a3c75 Teach the new SROA to handle cases where an alloca that has already been
scheduled for processing on the worklist eventually gets deleted while
we are processing another alloca, fixing the original test case in
PR13990.

To facilitate this, add a remove_if helper to the SetVector abstraction.
It's not easy to use the standard abstractions for this because of the
specifics of SetVectors types and implementation.

Finally, a nice small test case is included. Thanks to Benjamin for the
fantastic reduced test case here! All I had to do was delete some empty
basic blocks!

llvm-svn: 165065
2012-10-02 22:46:45 +00:00
Chandler Carruth 6c3890b680 Fix another crasher in SROA, reported by Joel.
We require that the indices into the use lists are stable in order to
build fast lookup tables to locate a particular partition use from an
operand of a PHI or select. This is (obviously in hind sight)
incompatible with erasing elements from the array. Really, we don't want
to erase anyways. It is expensive, and a rare operation. Instead, simply
weaken the contract of the PartitionUse structure to allow null Use
pointers to represent dead uses. Now we can clear out the pointer to
mark things as dead, and all it requires is adding some 'continue'
checks to the various loops.

I'm still reducing a test case for this, as the test case I have is
huge. I think this one I can get a nice test case for though, as it was
much more deterministic.

llvm-svn: 165032
2012-10-02 18:57:13 +00:00
Chandler Carruth 3903e05244 Fix a silly coding error on my part. The whole point of the speculator
being separate was that it can grow the use list. As a consequence, we
can't use the iterator-pair interface, we need an index based interface.
Expose such an interface from the AllocaPartitioning, and use it in the
speculator.

This should at least fix a use-after-free bug found by Duncan, and may
fix some of the other crashers.

I don't have a nice deterministic test case yet, but if I get a good
one, I'll add it.

llvm-svn: 165027
2012-10-02 17:49:47 +00:00
Chandler Carruth d71ef3a02a Make this plural. Spotted by Duncan in review (and a very old typo, this
is the second time I've moved this comment around...)

llvm-svn: 164939
2012-10-01 12:24:42 +00:00
Chandler Carruth d325f8021b Prune some unnecessary includes.
llvm-svn: 164938
2012-10-01 12:21:54 +00:00
Chandler Carruth 176ca71a82 Fix several issues with alignment. We weren't always accounting for type
alignment requirements of the new alloca. As one consequence which was
reported as a bug by Duncan, we overaligned memcpy calls to ranges of
allocas after they were rewritten to types with lower alignment
requirements. Other consquences are possible, but I don't have any test
cases for them.

llvm-svn: 164937
2012-10-01 12:16:54 +00:00
Chandler Carruth 82a57543d6 Factor the PHI and select speculation into a separate rewriter. This
could probably be factored still further to hoist this logic into
a generic helper, but currently I don't have particularly clean ideas
about how to handle that.

This at least allows us to drop custom load rewriting from the
speculation logic, which in turn allows the existing load rewriting
logic to fire. In theory, this could enable vector promotion or other
tricks after speculation occurs, but I've not dug into such issues. This
is primarily just cleaning up the factoring of the code and the
resulting logic.

llvm-svn: 164933
2012-10-01 10:54:05 +00:00
Chandler Carruth 54e8f0b4cf Refactor the PartitionUse structure to actually use the Use* instead of
a pair of instructions, one for the used pointer and the second for the
user. This simplifies the representation and also makes it more dense.

This was noticed because of the miscompile in PR13926. In that case, we
were running up against a fundamental "bad idea" in the speculation of
PHI and select instructions: the speculation and rewriting are
interleaved, which requires phi speculation to also perform load
rewriting! This is bad, and causes us to miss opportunities to do (for
example) vector rewriting only exposed after PHI speculation, etc etc.
It also, in the old system, required us to insert *new* load uses into
the current partition's use list, which would then be ignored during
rewriting because we had already extracted an end iterator for the use
list. The appending behavior (and much of the other oddities) stem from
the strange de-duplication strategy in the PartitionUse builder.
Amusingly, all this went without notice for so long because it could
only be triggered by having *different* GEPs into the same partition of
the same alloca, where both different GEPs were operands of a single
PHI, and where the GEP which was not encountered first also had multiple
uses within that same PHI node... Hence the insane steps required to
reproduce.

So, step one in fixing this fundamental bad idea is to make the
PartitionUse actually contain a Use*, and to make the builder do proper
deduplication instead of funky de-duplication. This is enough to remove
the appending behavior, and fix the miscompile in PR13926, but there is
more work to be done here. Subsequent commits will lift the speculation
into its own visitor. It'll be a useful step toward potentially
extracting all of the speculation logic into a generic utility
transform.

The existing PHI test case for repeated operands has been made more
extreme to catch even these issues. This test case, run through the old
pass, will exactly reproduce the miscompile from PR13926. ;] We were so
close here!

llvm-svn: 164925
2012-10-01 01:49:22 +00:00
Chandler Carruth 903790eff5 Fix a somewhat surprising miscompile where code relying on an ABI
alignment could lose it due to the alloca type moving down to a much
smaller alignment guarantee.

Now SROA will actively compute a proper alignment, factoring the target
data, any explicit alignment, and the offset within the struct. This
will in some cases lower the alignment requirements, but when we lower
them below those of the type, we drop the alignment entirely to give
freedom to the code generator to align it however is convenient.

Thanks to Duncan for the lovely test case that pinned this down. =]

llvm-svn: 164891
2012-09-29 10:41:21 +00:00
Chandler Carruth 208124f5a2 Analogous fix to memset and memcpy rewriting. Don't have a test case
contrived for these yet, as I spotted them by inspection and the test
cases are a bit more tricky to phrase.

llvm-svn: 164691
2012-09-26 10:59:22 +00:00
Chandler Carruth 3e4273dd0c When rewriting the pointer operand to a load or store which has
alignment guarantees attached, re-compute the alignment so that we
consider offsets which impact alignment.

llvm-svn: 164690
2012-09-26 10:45:28 +00:00
Chandler Carruth 871ba7249c Teach all of the loads, stores, memsets and memcpys created by the
rewriter in SROA to carry a proper alignment. This involves
interrogating various sources of alignment, etc. This is a more complete
and principled fix to PR13920 as well as related bugs pointed out by Eli
in review and by inspection in the area.

Also by inspection fix the integer and vector promotion paths to create
aligned loads and stores. I still need to work up test cases for
these... Sorry for the delay, they were found purely by inspection.

llvm-svn: 164689
2012-09-26 10:27:46 +00:00
Chandler Carruth 4bd8f66ed9 Revert the business end of r164636 and try again. I'll come in again. ;]
This should really, really fix PR13916. For real this time. The
underlying bug is... a bit more subtle than I had imagined.

The setup is a code pattern that leads to an @llvm.memcpy call with two
equal pointers to an alloca in the source and dest. Now, not any pattern
will do. The alloca needs to be formed just so, and both pointers should
be wrapped in different bitcasts etc. When this precise pattern hits,
a funny sequence of events transpires. First, we correctly detect the
potential for overlap, and correctly optimize the memcpy. The first
time. However, we do simplify the set of users of the alloca, and that
causes us to run the alloca back through the SROA pass in case there are
knock-on simplifications. At this point, a curious thing has happened.
If we happen to have an i8 alloca, we have direct i8 pointer values. So
we don't bother creating a cast, we rewrite the arguments to the memcpy
to dircetly refer to the alloca.

Now, in an unrelated area of the pass, we have clever logic which
ensures that when visiting each User of a particular pointer derived
from an alloca, we only visit that User once, and directly inspect all
of its operands which refer to that particular pointer value. However,
the mechanism used to detect memcpy's with the potential to overlap
relied upon getting visited once per *Use*, not once per *User*. This is
always true *unless* the same exact value is both source and dest. It
turns out that almost nothing actually produces that pattern though.

We can hand craft test cases that more directly test this behavior of
course, and those are included. Also, note that there is a significant
missed optimization here -- we prove in many cases that there is
a non-volatile memcpy call with identical source and dest addresses. We
shouldn't prevent splitting the alloca in that case, and in fact we
should just remove such memcpy calls eagerly. I'll address that in
a subsequent commit.

llvm-svn: 164669
2012-09-26 07:41:40 +00:00
Nick Lewycky d9f7910671 Don't drop the alignment on a memcpy intrinsic when producing a store. This is
only a missed optimization opportunity if the store is over-aligned, but a
miscompile if the store's new type has a higher natural alignment than the
memcpy did. Fixes PR13920!

llvm-svn: 164641
2012-09-25 22:46:21 +00:00
Nick Lewycky a0c16aee0a Revert the business end of r164634, and replace it with a different fix. The
reason we were getting two of the same alloca is because of a memmove/memcpy
which had the same alloca in both the src and dest. Now we detect that case
directly. This has the same testcase as before, but fixes a clang test
CodeGenObjC/exceptions.m which runs clang -O2.

llvm-svn: 164636
2012-09-25 21:50:37 +00:00
Nick Lewycky 9f19349846 Don't try to promote the same alloca twice. Fixes PR13916!
Chandler, it's not obvious that it's okay that this alloca gets into the list
twice to begin with. Please review and see whether this is the fix you really
want, but I wanted to get a fix checked in quickly.

llvm-svn: 164634
2012-09-25 21:15:50 +00:00
Chandler Carruth 8b907e8acb Fix a case where SROA did not correctly detect dead PHI or selects due
to chains or cycles between PHIs and/or selects. Also add a couple of
really nice test cases reduced from Kostya's reports in PR13905 and
PR13906. Both are fixed by this patch.

llvm-svn: 164596
2012-09-25 10:03:40 +00:00
Chandler Carruth 2603a18769 Fix a crash in SROA. This was reported independently by Takumi and
David (I think), but I would appreciate folks verifying that this fixes
the big crasher.

I'm still working on a reduced test case, but because this was causing
problems I wanted to get the fix checked in quickly.

llvm-svn: 164585
2012-09-25 02:42:03 +00:00
Chandler Carruth 92924fd28f Address one of the original FIXMEs for the new SROA pass by implementing
integer promotion analogous to vector promotion. When there is an
integer alloca being accessed both as its integer type and as a narrower
integer type, promote the narrower access to "insert" and "extract" the
smaller integer from the larger one, and make the integer alloca
a candidate for promotion.

In the new formulation, we don't care about target legal integer or use
thresholds to control things. Instead, we only perform this promotion to
an integer type which the frontend has already emitted a load or store
for. This bounds the scope and prevents optimization passes from
coalescing larger and larger entities into a single integer.

llvm-svn: 164479
2012-09-24 00:34:20 +00:00
Chandler Carruth e7a1ba5e8b Switch to a signed representation for the dynamic offsets while walking
across the uses of the alloca. It's entirely possible for negative
numbers to come up here, and in some rare cases simply doing the 2's
complement arithmetic isn't the correct decision. Notably, we can't zext
the index of the GEP. The definition of GEP is that these offsets are
sign extended or truncated to the size of the pointer, and then wrapping
2's complement arithmetic used.

This patch fixes an issue that comes up with *no* input from the
buildbots or bootstrap afaict. The only place where it manifested,
disturbingly, is Clang's own regression test suite. A reduced and
targeted collection of tests are added to cope with this. Note that I've
tried to pin down the potential cases of overflow, but may have missed
some cases. I've tried to add a few cases to test this, but its hard
because LLVM has quite limited support for >64bit constructs.

llvm-svn: 164475
2012-09-23 11:43:14 +00:00
Chandler Carruth 225d4bdb07 Fix a case where the new SROA pass failed to zap dead operands to
selects with a constant condition. This resulted in the operands
remaining live through the SROA rewriter. Most of the time, this just
caused some dead allocas to persist and get zapped by later passes, but
in one case found by Joerg, it caused a crash when we tried to *promote*
the alloca despite it having this dead use. We already have the
mechanisms in place to handle this, just wire select up to them.

llvm-svn: 164427
2012-09-21 23:36:40 +00:00
Chandler Carruth 3f882d4cf5 Fix the last crasher I've gotten a reproduction for in SROA. This one
from the dragonegg build bots when we turned on the full version of the
pass. Included a much reduced test case for this pesky bug, despite
bugpoint's uncooperative behavior.

Also, I audited all the similar code I could find and didn't spot any
other cases where this mistake cropped up.

llvm-svn: 164178
2012-09-18 22:37:19 +00:00
Chandler Carruth d356fd02a9 Fix getCommonType in a different way from the way I fixed it when
working on FCA splitting. Instead of refusing to form a common type when
there are uses of a subsection of the alloca as well as a use of the
entire alloca, just skip the subsection uses and continue looking for
a whole-alloca use with a type that we can use.

This produces slightly prettier IR I think, and also fixes the other
failure in the test.

llvm-svn: 164146
2012-09-18 17:49:37 +00:00
Benjamin Kramer a59ef5795d Fix build for compilers that don't understand injected class names properly.
llvm-svn: 164142
2012-09-18 17:11:47 +00:00
Benjamin Kramer 73a9e4a1f9 SROA: Use CRTP for OpSplitter to get rid of virtual dispatch and the virtual-dtor warnings that come with it.
llvm-svn: 164140
2012-09-18 17:06:32 +00:00
Benjamin Kramer 65f8c88242 SROA: Replace the member function template contraption for recursively splitting aggregates into a real class.
No intended functionality change.

llvm-svn: 164135
2012-09-18 16:20:46 +00:00
NAKAMURA Takumi eb2c8f0fc6 SROA.cpp: Appease msvc.
...I don't know why this could appease msvc...baad.

llvm-svn: 164130
2012-09-18 15:29:02 +00:00
Chandler Carruth a34f3567e0 Fix a warning in release builds and a test case I forgot to update with
a fix to getCommonType in the previous patch.

llvm-svn: 164120
2012-09-18 13:02:06 +00:00
Chandler Carruth 42cb9cb14f Add a major missing piece to the new SROA pass: aggressive splitting of
FCAs. This is essential in order to promote allocas that are used in
struct returns by frontends like Clang. The FCA load would block the
rest of the pass from firing, resulting is significant regressions with
the bullet benchmark in the nightly test suite.

Thanks to Duncan for repeated discussions about how best to do this, and
to both him and Benjamin for review.

This appears to have blocked many places where the pass tries to fire,
and so I'm expect somewhat different results with this fix added.

As with the last big patch, I'm including a change to enable the SROA by
default *temporarily*. Ben is going to remove this as soon as the LNT
bots pick up the patch. I'm just trying to get a round of LNT numbers
from the stable machines in the lab.

NOTE: Four clang tests are expected to fail in the brief window where
this is enabled. Sorry for the noise!

llvm-svn: 164119
2012-09-18 12:57:43 +00:00
Benjamin Kramer 02a4dff492 NewSROA: Provide a full set of operator< for ByteRanges.
MSVC8 won't compile lower_bound if one is missing.

llvm-svn: 164035
2012-09-17 16:42:36 +00:00
Chandler Carruth 9712117a07 Refactor the SROA visitors for partitioning an alloca and building
partition use lists a bit. No functionality changed.

These visitors are actually visiting a tuple of a Use and an offset into
the alloca. However, we use the InstVisitor to handle the dispatch over
the users, and so the Use and Offset are stored in class member
variables and set just before each call to visit(). This is fairly
awkward and makes the functions a bit harder to read, but its the only
real option we have until InstVisitor can be rewritten to use variadic
templates.

However, this pattern shouldn't be followed on the helper member
functions where there is no interface constraint from the visitor. We
already were passing the instruction as a normal parameter rather than
use the Use to get at it, start passing the offset as well. This will
become more important in subsequent patches as the offset will in some
cases change while visiting a single instruction.

llvm-svn: 164003
2012-09-16 19:39:50 +00:00
Chandler Carruth 70b44c5ccf Port the SSAUpdater-based promotion logic from the old SROA pass to the
new one, and add support for running the new pass in that mode and in
that slot of the pass manager. With this the new pass can completely
replace the old one within the pipeline.

The strategy for enabling or disabling the SSAUpdater logic is to do it
by making the requirement of the domtree analysis optional. By default,
it is required and we get the standard mem2reg approach. This is usually
the desired strategy when run in stand-alone situations. Within the
CGSCC pass manager, we disable requiring of the domtree analysis and
consequentially trigger fallback to the SSAUpdater promotion.

In theory this would allow the pass to re-use a domtree if one happened
to be available even when run in a mode that doesn't require it. In
practice, it lets us have a single pass rather than two which was
simpler for me to wrap my head around.

There is a hidden flag to force the use of the SSAUpdater code path for
the purpose of testing. The primary testing strategy is just to run the
existing tests through that path. One notable difference is that it has
custom code to handle lifetime markers, and one of the tests has been
enhanced to exercise that code.

This has survived a bootstrap and the test suite without serious
correctness issues, however my run of the test suite produced *very*
alarming performance numbers. I don't entirely understand or trust them
though, so more investigation is on-going.

To aid my understanding of the performance impact of the new SROA now
that it runs throughout the optimization pipeline, I'm enabling it by
default in this commit, and will disable it again once the LNT bots have
picked up one iteration with it. I want to get those bots (which are
much more stable) to evaluate the impact of the change before I jump to
any conclusions.

NOTE: Several Clang tests will fail because they run -O3 and check the
result's order of output. They'll go back to passing once I disable it
again.

llvm-svn: 163965
2012-09-15 11:43:14 +00:00
Benjamin Kramer 4622cd7edd SROA: Silence unused variable warnings in Release builds.
The NDEBUG hack is ugly, but I see no better solution.

llvm-svn: 163900
2012-09-14 13:08:09 +00:00
Chandler Carruth 054a40a4ff Rework the computation of a sub-structure natural type. There were
pointless checks in here, bad asserts, and just confusing code. I've
also added a bit more to the comment to clarify what this function is
really trying to do as it was not obvious to Duncan when studying it.

Thanks to Duncan for helping me dig through the issue.

No real functionality changed here in practical cases, and certainly no
test case. This is just cleanup spotted by inspection.

llvm-svn: 163897
2012-09-14 11:08:31 +00:00
Chandler Carruth 0cc59250d5 Rely on the recursive check for pointer types rather than adding an
explicit check before recursing. A simplification requested by Duncan
during review.

llvm-svn: 163896
2012-09-14 10:30:44 +00:00
Chandler Carruth cabd96cbaa Be a bit more aggressive in bailing out of this routine. Spotted by
inspection by Duncan during review. My suspicion is that we would still
have returned 0 anyways in this case, but doing it sooner is better.

llvm-svn: 163895
2012-09-14 10:30:42 +00:00
Chandler Carruth dd3cea898f Add some comments clarifying that the GEP analysis for vector GEPs is
deeply suspicious and likely to go away eventually. Also fix a bogus
comment about one of the checks in the vector GEP analysis. Based on
review from Duncan.

llvm-svn: 163894
2012-09-14 10:30:40 +00:00
Chandler Carruth 19450da9e6 Move an instance variable to a local variable based on review by Duncan.
Originally I had anticipated needing to thread this through more bits of
the SROA pass itself, but that ended up not happening. In the end, this
is a much simpler way to manange the variable.

llvm-svn: 163893
2012-09-14 10:26:38 +00:00
Chandler Carruth 4b40e008bd Add a comment about debug intrinsics that I *really* don't want to
forget from Duncan's review as a FIXME.

llvm-svn: 163892
2012-09-14 10:26:36 +00:00
Chandler Carruth b0de6ddbe0 Add two asserts that Duncan thought would help ensure things don't rot
unexpectedly in the future. More fixes from his code review.

llvm-svn: 163891
2012-09-14 10:26:34 +00:00
Chandler Carruth 796de48459 Remove some dead, commented out code Duncan spotted in review.
llvm-svn: 163889
2012-09-14 10:18:53 +00:00
Chandler Carruth 25fb23d687 Wrap the dumping and printing routines in NDEBUG and LLVM_ENABLE_DUMP macros.
llvm-svn: 163888
2012-09-14 10:18:51 +00:00
Chandler Carruth 93a21e7aaf Lots of comment fixes and cleanups from Duncan's review.
llvm-svn: 163887
2012-09-14 10:18:49 +00:00
NAKAMURA Takumi 4bbca0bb6c SROA.cpp: Unbreak gcc, sorry!
llvm-svn: 163886
2012-09-14 10:06:10 +00:00
NAKAMURA Takumi f4619d169d SROA.cpp: Appease msvc. LLVM_ATTRIBUTE(s) should come front of "const".
llvm-svn: 163885
2012-09-14 09:55:22 +00:00
Chandler Carruth 9a447db9fc Speculative change to try to fix older GCC versions that can't handle
the injected class name of a dependent base class here.

llvm-svn: 163884
2012-09-14 09:30:33 +00:00
Chandler Carruth 1b398ae0ae Introduce a new SROA implementation.
This is essentially a ground up re-think of the SROA pass in LLVM. It
was initially inspired by a few problems with the existing pass:
- It is subject to the bane of my existence in optimizations: arbitrary
  thresholds.
- It is overly conservative about which constructs can be split and
  promoted.
- The vector value replacement aspect is separated from the splitting
  logic, missing many opportunities where splitting and vector value
  formation can work together.
- The splitting is entirely based around the underlying type of the
  alloca, despite this type often having little to do with the reality
  of how that memory is used. This is especially prevelant with unions
  and base classes where we tail-pack derived members.
- When splitting fails (often due to the thresholds), the vector value
  replacement (again because it is separate) can kick in for
  preposterous cases where we simply should have split the value. This
  results in forming i1024 and i2048 integer "bit vectors" that
  tremendously slow down subsequnet IR optimizations (due to large
  APInts) and impede the backend's lowering.

The new design takes an approach that fundamentally is not susceptible
to many of these problems. It is the result of a discusison between
myself and Duncan Sands over IRC about how to premptively avoid these
types of problems and how to do SROA in a more principled way. Since
then, it has evolved and grown, but this remains an important aspect: it
fixes real world problems with the SROA process today.

First, the transform of SROA actually has little to do with replacement.
It has more to do with splitting. The goal is to take an aggregate
alloca and form a composition of scalar allocas which can replace it and
will be most suitable to the eventual replacement by scalar SSA values.
The actual replacement is performed by mem2reg (and in the future
SSAUpdater).

The splitting is divided into four phases. The first phase is an
analysis of the uses of the alloca. This phase recursively walks uses,
building up a dense datastructure representing the ranges of the
alloca's memory actually used and checking for uses which inhibit any
aspects of the transform such as the escape of a pointer.

Once we have a mapping of the ranges of the alloca used by individual
operations, we compute a partitioning of the used ranges. Some uses are
inherently splittable (such as memcpy and memset), while scalar uses are
not splittable. The goal is to build a partitioning that has the minimum
number of splits while placing each unsplittable use in its own
partition. Overlapping unsplittable uses belong to the same partition.
This is the target split of the aggregate alloca, and it maximizes the
number of scalar accesses which become accesses to their own alloca and
candidates for promotion.

Third, we re-walk the uses of the alloca and assign each specific memory
access to all the partitions touched so that we have dense use-lists for
each partition.

Finally, we build a new, smaller alloca for each partition and rewrite
each use of that partition to use the new alloca. During this phase the
pass will also work very hard to transform uses of an alloca into a form
suitable for promotion, including forming vector operations, speculating
loads throguh PHI nodes and selects, etc.

After splitting is complete, each newly refined alloca that is
a candidate for promotion to a scalar SSA value is run through mem2reg.

There are lots of reasonably detailed comments in the source code about
the design and algorithms, and I'm going to be trying to improve them in
subsequent commits to ensure this is well documented, as the new pass is
in many ways more complex than the old one.

Some of this is still a WIP, but the current state is reasonbly stable.
It has passed bootstrap, the nightly test suite, and Duncan has run it
successfully through the ACATS and DragonEgg test suites. That said, it
remains behind a default-off flag until the last few pieces are in
place, and full testing can be done.

Specific areas I'm looking at next:
- Improved comments and some code cleanup from reviews.
- SSAUpdater and enabling this pass inside the CGSCC pass manager.
- Some datastructure tuning and compile-time measurements.
- More aggressive FCA splitting and vector formation.

Many thanks to Duncan Sands for the thorough final review, as well as
Benjamin Kramer for lots of review during the process of writing this
pass, and Daniel Berlin for reviewing the data structures and algorithms
and general theory of the pass. Also, several other people on IRC, over
lunch tables, etc for lots of feedback and advice.

llvm-svn: 163883
2012-09-14 09:22:59 +00:00