This patch issues an error message if Darwin ABI is attempted with the PPC
backend. It also cleans up existing test cases, either converting the test to
use an alternative triple or removing the test if the coverage is no longer
needed.
Updated Tests
-------------
The majority of test cases were updated to use a different triple that does not
include the Darwin ABI. Many tests were also updated to use FileCheck, in place
of grep.
Deleted Tests
-------------
llvm/test/tools/dsymutil/PowerPC/sibling.test was originally added to test
specific functionality of dsymutil using an object file created with an old
version of llvm-gcc for a Powerbook G4. After a discussion with @JDevlieghere he
suggested removing the test.
llvm/test/CodeGen/PowerPC/combine_loads_from_build_pair.ll was converted from a
PPC test to a SystemZ test, as the behavior is also reproducible there.
All other tests that were deleted were specific to the darwin/ppc ABI and no
longer necessary.
Phabricator Review: https://reviews.llvm.org/D50988
llvm-svn: 340795
Currently we have a number of tests that fail with -verify-machineinstrs.
To detect this cases earlier we add the option to the testcases with the
exception of tests that will currently fail with this option. PR 27456 keeps
track of this failures.
No code review, as discussed with Hal Finkel.
llvm-svn: 277624
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
The fast register allocator is not supposed to work in the optimizing
pipeline. It doesn't make sense to compute live intervals, run full copy
coalescing, and then run RAFast.
Fast register allocation in the optimizing pipeline is better done by
RABasic.
llvm-svn: 158242
in local register allocator. If a reg-reg copy has a phys reg
input and a virt reg output, and this is the last use of the phys
reg, assign the phys reg to the virt reg. If a reg-reg copy has
a phys reg output and we need to reload its spilled input, reload
it directly into the phys reg than passing it through another reg.
Following 76208, there is sometimes no dependency between the def of
a phys reg and its use; this creates a window where that phys reg
can be used for spilling (this is true in linear scan also). This
is bad and needs to be fixed a better way, although 76208 works too
well in practice to be reverted. However, there should normally be
no spilling within inline asm blocks. The patch here goes a long way
towards making this actually be true.
llvm-svn: 91485
172 %ECX<def> = MOV32rr %reg1039<kill>
180 INLINEASM <es:subl $5,$1
sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9, %EAX<kill>,
36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
188 %EAX<def> = MOV32rr %EAX<kill>
196 %ECX<def> = MOV32rr %ECX<kill>
204 %ECX<def> = MOV32rr %ECX<kill>
212 %EAX<def> = MOV32rr %EAX<kill>
220 %EAX<def> = MOV32rr %EAX
228 %reg1039<def> = MOV32rr %ECX<kill>
The early clobber operand ties ECX input to the ECX def.
The live interval of ECX is represented as this:
%reg20,inf = [46,47:1)[174,230:0) 0@174-(230) 1@46-(47)
The right way to represent this is something like
%reg20,inf = [46,47:2)[174,182:1)[181:230:0) 0@174-(182) 1@181-230 @2@46-(47)
Of course that won't work since that means overlapping live ranges defined by two val#.
The workaround for now is to add a bit to val# which says the val# is redefined by a early clobber def somewhere. This prevents the move at 228 from being optimized away by SimpleRegisterCoalescing::AdjustCopiesBackFrom.
llvm-svn: 61259