In a kernel (or in general in environments where bit 55 of the address
is set) the shadow base needs to point to the end of the shadow region,
not the beginning. Bit 55 needs to be sign extended into bits 52-63
of the shadow base offset, otherwise we end up loading from an invalid
address. We can do this by using SBFX instead of UBFX.
Using SBFX should have no effect in the userspace case where bit 55
of the address is clear so we do so unconditionally. I don't think
we need a ABI version bump for this (but one will come anyway when
we switch to x20 for the shadow base register).
Differential Revision: https://reviews.llvm.org/D90424
From a code size perspective it turns out to be better to use a
callee-saved register to pass the shadow base. For non-leaf functions
it avoids the need to reload the shadow base into x9 after each
function call, at the cost of an additional stack slot to save the
caller's x20. But with x9 there is also a stack size cost, either
as a result of copying x9 to a callee-saved register across calls or
by spilling it to stack, so for the non-leaf functions the change to
stack usage is largely neutral.
It is also code size (and stack size) neutral for many leaf functions.
Although they now need to save/restore x20 this can typically be
combined via LDP/STP into the x30 save/restore. In the case where
the function needs callee-saved registers or stack spills we end up
needing, on average, 8 more bytes of stack and 1 more instruction
but given the improvements to other functions this seems like the
right tradeoff.
Unfortunately we cannot change the register for the v1 (non short
granules) check because the runtime assumes that the shadow base
register is stored in x9, so the v1 check still uses x9.
Aside from that there is no change to the ABI because the choice
of shadow base register is a contract between the caller and the
outlined check function, both of which are compiler generated. We do
need to rename the v2 check functions though because the functions
are deduplicated based on their names, not on their contents, and we
need to make sure that when object files from old and new compilers
are linked together we don't end up with a function that uses x9
calling an outlined check that uses x20 or vice versa.
With this change code size of /system/lib64/*.so in an Android build
with HWASan goes from 200066976 bytes to 194085912 bytes, or a 3%
decrease.
Differential Revision: https://reviews.llvm.org/D90422
A short granule is a granule of size between 1 and `TG-1` bytes. The size
of a short granule is stored at the location in shadow memory where the
granule's tag is normally stored, while the granule's actual tag is stored
in the last byte of the granule. This means that in order to verify that a
pointer tag matches a memory tag, HWASAN must check for two possibilities:
* the pointer tag is equal to the memory tag in shadow memory, or
* the shadow memory tag is actually a short granule size, the value being loaded
is in bounds of the granule and the pointer tag is equal to the last byte of
the granule.
Pointer tags between 1 to `TG-1` are possible and are as likely as any other
tag. This means that these tags in memory have two interpretations: the full
tag interpretation (where the pointer tag is between 1 and `TG-1` and the
last byte of the granule is ordinary data) and the short tag interpretation
(where the pointer tag is stored in the granule).
When HWASAN detects an error near a memory tag between 1 and `TG-1`, it
will show both the memory tag and the last byte of the granule. Currently,
it is up to the user to disambiguate the two possibilities.
Because this functionality obsoletes the right aligned heap feature of
the HWASAN memory allocator (and because we can no longer easily test
it), the feature is removed.
Also update the documentation to cover both short granule tags and
outlined checks.
Differential Revision: https://reviews.llvm.org/D63908
llvm-svn: 365551
Summary: Provided rule of thumb percentage chances of miss for 4 and 8 bit tag sizes.
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D58195
llvm-svn: 353990
Summary:
preliminary design document for a hardware-assisted memory safety (HWAMS) tool, similar to AddressSanitizer
The name TaggedAddressSanitizer and the rest of the document, are early draft, suggestions are welcome.
The code will follow shortly.
Reviewers: eugenis, alekseyshl
Reviewed By: eugenis
Subscribers: davidxl, cryptoad, fedor.sergeev, cfe-commits, llvm-commits
Differential Revision: https://reviews.llvm.org/D40568
llvm-svn: 319684