expressions that are simple enough to get passed to the "frame var" underpinnings. The parser code will
have to be changed to also query for the dynamic types & offsets as it is looking up variables.
The behavior of "frame var" is controlled in two ways. You can pass "-d {true/false} to the frame var
command to get the dynamic or static value of the variables you are printing.
There's also a general setting:
target.prefer-dynamic-value (boolean) = 'true'
which is consulted if you call "frame var" without supplying a value for the -d option.
llvm-svn: 129623
lldb_private::OptionGroup
lldb_private::OptionGroupOptions
OptionGroup lets you define a class that encapsulates settings that you want
to reuse in multiple commands. It contains only the option definitions and the
ability to set the option values, but it doesn't directly interface with the
lldb_private::Options class that is the front end to all of the CommandObject
option parsing. For that the OptionGroupOptions class can be used. It aggregates
one or more OptionGroup objects and directs the option setting to the
appropriate OptionGroup class. For an example of this, take a look at the
CommandObjectFile and how it uses its "m_option_group" object shown below
to be able to set values in both the FileOptionGroup and PlatformOptionGroup
classes. The members used in CommandObjectFile are:
OptionGroupOptions m_option_group;
FileOptionGroup m_file_options;
PlatformOptionGroup m_platform_options;
Then in the constructor for CommandObjectFile you can combine the option
settings. The code below shows a simplified version of the constructor:
CommandObjectFile::CommandObjectFile(CommandInterpreter &interpreter) :
CommandObject (...),
m_option_group (interpreter),
m_file_options (),
m_platform_options(true)
{
m_option_group.Append (&m_file_options);
m_option_group.Append (&m_platform_options);
m_option_group.Finalize();
}
We append the m_file_options and then the m_platform_options and then tell
the option group the finalize the results. This allows the m_option_group to
become the organizer of our prefs and after option parsing we end up with
valid preference settings in both the m_file_options and m_platform_options
objects. This also allows any other commands to use the FileOptionGroup and
PlatformOptionGroup classes to implement options for their commands.
Renamed:
virtual void Options::ResetOptionValues();
to:
virtual void Options::OptionParsingStarting();
And implemented a new callback named:
virtual Error Options::OptionParsingFinished();
This allows Options subclasses to verify that the options all go together
after all of the options have been specified and gives the chance for the
command object to return an error. It also gives a chance to take all of the
option values and produce or initialize objects after all options have
completed parsing.
Modfied:
virtual Error
SetOptionValue (int option_idx, const char *option_arg) = 0;
to be:
virtual Error
SetOptionValue (uint32_t option_idx, const char *option_arg) = 0;
(option_idx is now unsigned).
llvm-svn: 129415
the CommandInterpreter where it was always being used.
Make sure that Modules can track their object file offsets correctly to
allow opening of sub object files (like the "__commpage" on darwin).
Modified the Platforms to be able to launch processes. The first part of this
move is the platform soon will become the entity that launches your program
and when it does, it uses a new ProcessLaunchInfo class which encapsulates
all process launching settings. This simplifies the internal APIs needed for
launching. I want to slowly phase out process launching from the process
classes, so for now we can still launch just as we used to, but eventually
the platform is the object that should do the launching.
Modified the Host::LaunchProcess in the MacOSX Host.mm to correctly be able
to launch processes with all of the new eLaunchFlag settings. Modified any
code that was manually launching processes to use the Host::LaunchProcess
functions.
Fixed an issue where lldb_private::Args had implicitly defined copy
constructors that could do the wrong thing. This has now been fixed by adding
an appropriate copy constructor and assignment operator.
Make sure we don't add empty ModuleSP entries to a module list.
Fixed the commpage module creation on MacOSX, but we still need to train
the MacOSX dynamic loader to not get rid of it when it doesn't have an entry
in the all image infos.
Abstracted many more calls from in ProcessGDBRemote down into the
GDBRemoteCommunicationClient subclass to make the classes cleaner and more
efficient.
Fixed the default iOS ARM register context to be correct and also added support
for targets that don't support the qThreadStopInfo packet by selecting the
current thread (only if needed) and then sending a stop reply packet.
Debugserver can now start up with a --unix-socket (-u for short) and can
then bind to port zero and send the port it bound to to a listening process
on the other end. This allows the GDB remote platform to spawn new GDB server
instances (debugserver) to allow platform debugging.
llvm-svn: 129351
This allows you to have a platform selected, then specify a triple using
"i386" and have the remaining triple items (vendor, os, and environment) set
automatically.
Many interpreter commands take the "--arch" option to specify an architecture
triple, so now the command options needed to be able to get to the current
platform, so the Options class now take a reference to the interpreter on
construction.
Modified the build LLVM building in the Xcode project to use the new
Xcode project level user definitions:
LLVM_BUILD_DIR - a path to the llvm build directory
LLVM_SOURCE_DIR - a path to the llvm sources for the llvm that will be used to build lldb
LLVM_CONFIGURATION - the configuration that lldb is built for (Release,
Release+Asserts, Debug, Debug+Asserts).
I also changed the LLVM build to not check if "lldb/llvm" is a symlink and
then assume it is a real llvm build directory versus the unzipped llvm.zip
package, so now you can actually have a "lldb/llvm" directory in your lldb
sources.
llvm-svn: 129112
class now implements the Host functionality for a lot of things that make
sense by default so that subclasses can check:
int
PlatformSubclass::Foo ()
{
if (IsHost())
return Platform::Foo (); // Let the platform base class do the host specific stuff
// Platform subclass specific code...
int result = ...
return result;
}
Added new functions to the platform:
virtual const char *Platform::GetUserName (uint32_t uid);
virtual const char *Platform::GetGroupName (uint32_t gid);
The user and group names are cached locally so that remote platforms can avoid
sending packets multiple times to resolve this information.
Added the parent process ID to the ProcessInfo class.
Added a new ProcessInfoMatch class which helps us to match processes up
and changed the Host layer over to using this new class. The new class allows
us to search for processs:
1 - by name (equal to, starts with, ends with, contains, and regex)
2 - by pid
3 - And further check for parent pid == value, uid == value, gid == value,
euid == value, egid == value, arch == value, parent == value.
This is all hookup up to the "platform process list" command which required
adding dumping routines to dump process information. If the Host class
implements the process lookup routines, you can now lists processes on
your local machine:
machine1.foo.com % lldb
(lldb) platform process list
PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME
====== ====== ========== ========== ========== ========== ======================== ============================
99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge
94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker
94852 244 username usergroup username usergroup x86_64-apple-darwin Safari
94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode
92742 92710 username usergroup username usergroup i386-apple-darwin debugserver
This of course also works remotely with the lldb-platform:
machine1.foo.com % lldb-platform --listen 1234
machine2.foo.com % lldb
(lldb) platform create remote-macosx
Platform: remote-macosx
Connected: no
(lldb) platform connect connect://localhost:1444
Platform: remote-macosx
Triple: x86_64-apple-darwin
OS Version: 10.6.7 (10J869)
Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386
Hostname: machine1.foo.com
Connected: yes
(lldb) platform process list
PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME
====== ====== ========== ========== ========== ========== ======================== ============================
99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation
99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb
99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge
94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker
94852 244 username usergroup username usergroup x86_64-apple-darwin Safari
The lldb-platform implements everything with the Host:: layer, so this should
"just work" for linux. I will probably be adding more stuff to the Host layer
for launching processes and attaching to processes so that this support should
eventually just work as well.
Modified the target to be able to be created with an architecture that differs
from the main executable. This is needed for iOS debugging since we can have
an "armv6" binary which can run on an "armv7" machine, so we want to be able
to do:
% lldb
(lldb) platform create remote-ios
(lldb) file --arch armv7 a.out
Where "a.out" is an armv6 executable. The platform then can correctly decide
to open all "armv7" images for all dependent shared libraries.
Modified the disassembly to show the current PC value. Example output:
(lldb) disassemble --frame
a.out`main:
0x1eb7: pushl %ebp
0x1eb8: movl %esp, %ebp
0x1eba: pushl %ebx
0x1ebb: subl $20, %esp
0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18
0x1ec3: popl %ebx
-> 0x1ec4: calll 0x1f12 ; getpid
0x1ec9: movl %eax, 4(%esp)
0x1ecd: leal 199(%ebx), %eax
0x1ed3: movl %eax, (%esp)
0x1ed6: calll 0x1f18 ; printf
0x1edb: leal 213(%ebx), %eax
0x1ee1: movl %eax, (%esp)
0x1ee4: calll 0x1f1e ; puts
0x1ee9: calll 0x1f0c ; getchar
0x1eee: movl $20, (%esp)
0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6
0x1efa: movl $12, %eax
0x1eff: addl $20, %esp
0x1f02: popl %ebx
0x1f03: leave
0x1f04: ret
This can be handy when dealing with the new --line options that was recently
added:
(lldb) disassemble --line
a.out`main + 13 at test.c:19
18 {
-> 19 printf("Process: %i\n\n", getpid());
20 puts("Press any key to continue..."); getchar();
-> 0x1ec4: calll 0x1f12 ; getpid
0x1ec9: movl %eax, 4(%esp)
0x1ecd: leal 199(%ebx), %eax
0x1ed3: movl %eax, (%esp)
0x1ed6: calll 0x1f18 ; printf
Modified the ModuleList to have a lookup based solely on a UUID. Since the
UUID is typically the MD5 checksum of a binary image, there is no need
to give the path and architecture when searching for a pre-existing
image in an image list.
Now that we support remote debugging a bit better, our lldb_private::Module
needs to be able to track what the original path for file was as the platform
knows it, as well as where the file is locally. The module has the two
following functions to retrieve both paths:
const FileSpec &Module::GetFileSpec () const;
const FileSpec &Module::GetPlatformFileSpec () const;
llvm-svn: 128563
public types and public enums. This was done to keep the SWIG stuff from
parsing all sorts of enums and types that weren't needed, and allows us to
abstract our API better.
llvm-svn: 128239
by LLDB. Instead of being materialized into the input structure
passed to the expression, variables are left in place and pointers
to them are materialzied into the structure. Variables not resident
in memory (notably, registers) get temporary memory regions allocated
for them.
Persistent variables are the most complex part of this, because they
are made in various ways and there are different expectations about
their lifetime. Persistent variables now have flags indicating their
status and what the expectations for longevity are. They can be
marked as residing in target memory permanently -- this is the
default for result variables from expressions entered on the command
line and for explicitly declared persistent variables (but more on
that below). Other result variables have their memory freed.
Some major improvements resulting from this include being able to
properly take the address of variables, better and cleaner support
for functions that return references, and cleaner C++ support in
general. One problem that remains is the problem of explicitly
declared persistent variables; I have not yet implemented the code
that makes references to them into indirect references, so currently
materialization and dematerialization of these variables is broken.
llvm-svn: 123371
values or persistent expression variables. Now if an expression consists of
a value that is a child of a variable, or of a persistent variable only, we
will create a value object for it and make a ValueObjectConstResult from it to
freeze the value (for program variables only, not persistent variables) and
avoid running JITed code. For everything else we still parse up and JIT code
and run it in the inferior.
There was also a lot of clean up in the expression code. I made the
ClangExpressionVariables be stored in collections of shared pointers instead
of in collections of objects. This will help stop a lot of copy constructors on
these large objects and also cleans up the code considerably. The persistent
clang expression variables were moved over to the Target to ensure they persist
across process executions.
Added the ability for lldb_private::Target objects to evaluate expressions.
We want to evaluate expressions at the target level in case we aren't running
yet, or we have just completed running. We still want to be able to access the
persistent expression variables between runs, and also evaluate constant
expressions.
Added extra logging to the dynamic loader plug-in for MacOSX. ModuleList objects
can now dump their contents with the UUID, arch and full paths being logged with
appropriate prefix values.
Thread hardened the Communication class a bit by making the connection auto_ptr
member into a shared pointer member and then making a local copy of the shared
pointer in each method that uses it to make sure another thread can't nuke the
connection object while it is being used by another thread.
Added a new file to the lldb/test/load_unload test that causes the test a.out file
to link to the libd.dylib file all the time. This will allow us to test using
the DYLD_LIBRARY_PATH environment variable after moving libd.dylib somewhere else.
llvm-svn: 121745
Added a ThreadPlanCallUserExpression that differs from ThreadPlanCallFunction in that it holds onto a shared pointer to its ClangUserExpression so that can't go away before the thread plan is done using it.
Fixed the stop message when you hit a breakpoint while running a user expression so it is more obvious what has happened.
llvm-svn: 120386
adding support into lldb_private::Process:
virtual uint32_t
lldb_private::Process::LoadImage (const FileSpec &image_spec,
Error &error);
virtual Error
lldb_private::Process::UnloadImage (uint32_t image_token);
There is a default implementation that should work for both linux and MacOSX.
This ability has also been exported through the SBProcess API:
uint32_t
lldb::SBProcess::LoadImage (lldb::SBFileSpec &image_spec,
lldb::SBError &error);
lldb::SBError
lldb::SBProcess::UnloadImage (uint32_t image_token);
Modified the DynamicLoader plug-in interface to require it to be able to
tell us if it is currently possible to load/unload a shared library:
virtual lldb_private::Error
DynamicLoader::CanLoadImage () = 0;
This way the dynamic loader plug-ins are allows to veto whether we can
currently load a shared library since the dynamic loader might know if it is
currenlty loading/unloading shared libraries. It might also know about the
current host system and know where to check to make sure runtime or malloc
locks are currently being held.
Modified the expression parser to have ClangUserExpression::Evaluate() be
the one that causes the dynamic checkers to be loaded instead of other code
that shouldn't have to worry about it.
llvm-svn: 118227
which holds the name of a file whose contents are
prefixed to each expression. For example, if the file
~/lldb.prefix.header contains:
typedef unsigned short my_type;
then you can do this:
(lldb) settings set target.expr-prefix '~/lldb.prefix.header'
(lldb) expr sizeof(my_type)
(unsigned long) $0 = 2
When the variable is changed, the corresponding file
is loaded and its contents are fetched into a string
that is stored along with the target. This string
is then passed to each expression and inserted into
it during parsing, like this:
typedef unsigned short my_type;
void
$__lldb_expr(void *$__lldb_arg)
{
sizeof(my_type);
}
llvm-svn: 117627
debug information and you evaluated an expression, a crash would occur as a
result of an unchecked pointer.
Added the ability to get the expression path for a ValueObject. For a rectangle
point child "x" the expression path would be something like: "rect.top_left.x".
This will allow GUI and command lines to get ahold of the expression path for
a value object without having to explicitly know about the hierarchy. This
means the ValueObject base class now has a "ValueObject *m_parent;" member.
All ValueObject subclasses now correctly track their lineage and are able
to provide value expression paths as well.
Added a new "--flat" option to the "frame variable" to allow for flat variable
output. An example of the current and new outputs:
(lldb) frame variable
argc = 1
argv = 0x00007fff5fbffe80
pt = {
x = 2
y = 3
}
rect = {
bottom_left = {
x = 1
y = 2
}
top_right = {
x = 3
y = 4
}
}
(lldb) frame variable --flat
argc = 1
argv = 0x00007fff5fbffe80
pt.x = 2
pt.y = 3
rect.bottom_left.x = 1
rect.bottom_left.y = 2
rect.top_right.x = 3
rect.top_right.y = 4
As you can see when there is a lot of hierarchy it can help flatten things out.
Also if you want to use a member in an expression, you can copy the text from
the "--flat" output and not have to piece it together manually. This can help
when you want to use parts of the STL in expressions:
(lldb) frame variable --flat
argc = 1
argv = 0x00007fff5fbffea8
hello_world._M_dataplus._M_p = 0x0000000000000000
(lldb) expr hello_world._M_dataplus._M_p[0] == '\0'
llvm-svn: 116532
bool ValueObject::GetIsConstant() const;
void ValueObject::SetIsConstant();
This will stop anything from being re-evaluated within the value object so
that constant result value objects can maintain their frozen values without
anything being updated or changed within the value object.
Made it so the ValueObjectConstResult can be constructed with an
lldb_private::Error object to allow for expression results to have errors.
Since ValueObject objects contain error objects, I changed the expression
evaluation in ClangUserExpression from
static Error
ClangUserExpression::Evaluate (ExecutionContext &exe_ctx,
const char *expr_cstr,
lldb::ValueObjectSP &result_valobj_sp);
to:
static lldb::ValueObjectSP
Evaluate (ExecutionContext &exe_ctx, const char *expr_cstr);
Even though expression parsing is borked right now (pending fixes coming from
Sean Callanan), I filled in the implementation for:
SBValue SBFrame::EvaluateExpression (const char *expr);
Modified all expression code to deal with the above changes.
llvm-svn: 115589
results. The clang opaque type for the expression result will be added to the
Target's ASTContext, and the bytes will be stored in a DataBuffer inside
the new object. The class is named: ValueObjectConstResult
Now after an expression is evaluated, we can get a ValueObjectSP back that
contains a ValueObjectConstResult object.
Relocated the value object dumping code into a static function within
the ValueObject class instead of being in the CommandObjectFrame.cpp file
which is what contained the code to dump variables ("frame variables").
llvm-svn: 115578
arguments are specified in a standardized way, will have a standardized name, and
have functioning help.
The next step is to start writing useful help for all the argument types.
llvm-svn: 115335
accessed by the objects that own the settings. The previous approach wasn't
very usable and made for a lot of unnecessary code just to access variables
that were already owned by the objects.
While I fixed those things, I saw that CommandObject objects should really
have a reference to their command interpreter so they can access the terminal
with if they want to output usaage. Fixed up all CommandObjects to take
an interpreter and cleaned up the API to not need the interpreter to be
passed in.
Fixed the disassemble command to output the usage if no options are passed
down and arguments are passed (all disassebmle variants take options, there
are no "args only").
llvm-svn: 114252
- If you put a semicolon at the end of an expression,
this no longer causes the expression parser to
error out. This was a two-part fix: first,
ClangExpressionDeclMap::Materialize now handles
an empty struct (such as when there is no return
value); second, ASTResultSynthesizer walks backward
from the end of the ASTs until it reaches something
that's not a NullStmt.
- ClangExpressionVariable now properly byte-swaps when
printing itself.
- ClangUtilityFunction now cleans up after itself when
it's done compiling itself.
- Utility functions can now use external functions just
like user expressions.
- If you end your expression with a statement that does
not return a value, the expression now runs correctly
anyway.
Also, added the beginnings of an Objective-C object
validator function, which is neither installed nor used
as yet.
llvm-svn: 113789
expressions. Values used by the expression are
checked by validation functions which cause the
program to crash if the values are unsafe.
Major changes:
- Added IRDynamicChecks.[ch], which contains the
core code related to this feature
- Modified CommandObjectExpression to install the
validator functions into the target process.
- Added an accessor to Process that gets/sets the
helper functions
llvm-svn: 112690
The goal is to separate the parser's data from the data
belonging to the parser's clients. This allows clients
to use the parser to obtain (for example) a JIT compiled
function or some DWARF code, and then discard the parser
state.
Previously, parser state was held in ClangExpression and
used liberally by ClangFunction, which inherited from
ClangExpression. The main effects of this refactoring
are:
- reducing ClangExpression to an abstract class that
declares methods that any client must expose to the
expression parser,
- moving the code specific to implementing the "expr"
command from ClangExpression and
CommandObjectExpression into ClangUserExpression,
a new class,
- moving the common parser interaction code from
ClangExpression into ClangExpressionParser, a new
class, and
- making ClangFunction rely only on
ClangExpressionParser and not depend on the
internal implementation of ClangExpression.
Side effects include:
- the compiler interaction code has been factored
out of ClangFunction and is now in an AST pass
(ASTStructExtractor),
- the header file for ClangFunction is now fully
documented,
- several bugs that only popped up when Clang was
deallocated (which never happened, since the
lifetime of the compiler was essentially infinite)
are now fixed, and
- the developer-only "call" command has been
disabled.
I have tested the expr command and the Objective-C
step-into code, which use ClangUserExpression and
ClangFunction, respectively, and verified that they
work. Please let me know if you encounter bugs or
poor documentation.
llvm-svn: 112249
expression parser. There shouldn't be four separate
classes encapsulating a variable.
ClangExpressionVariable is now meant to be the
container for all variable information. It has
several optional components that hold data for
different subsystems.
ClangPersistentVariable has been removed; we now
use ClangExpressionVariable instead.
llvm-svn: 111600
additional (ComandReturnObject *) result parameter (default to NULL) and does
the right thing in setting the result status.
Also removed used variable ast_context.
llvm-svn: 110992
expression. It is now possible to do things like this:
(lldb) expr int $i = 5; $i + 1
$0 = (int) 6
(lldb) expr $i + 3
$1 = (int) 8
(lldb) expr $1 + $0
$2 = (int) 14
As a bonus, this allowed us to move printing of
expression results into the ClangPersistentVariable
class. This code needs a bit of refactoring -- in
particular, ClangExpressionDeclMap has eaten one too
many bacteria and needs to undergo mitosis -- but the
infrastructure appears to be holding up nicely.
llvm-svn: 110896
expression parser. It is now possible to type:
(lldb) expr int $i = 5; $i + 1
(int) 6
(lldb) expr $i + 2
(int) 7
The skeleton for automatic result variables is
also implemented. The changes affect:
- the process, which now contains a
ClangPersistentVariables object that holds
persistent variables associated with it
- the expression parser, which now uses
the persistent variables during variable
lookup
- TaggedASTType, where I loaded some commonly
used tags into a header so that they are
interchangeable between different clients of
the class
llvm-svn: 110777
made IR-based expression evaluation the default.
Also added a new class to hold persistent variables.
The class is empty as yet while I write up a design
document for what it will do. Also the place where
it is currently created (by the Expression command)
is certainly wrong.
llvm-svn: 110415
- When we JIT an expression, we print the disassembly
of the generated code
- When we put the structure into the target, we print
the individual entries in the structure byte for
byte.
llvm-svn: 109278
to be executed by the inferior. This required explicit support
from RecordingMemoryManager for finding the address range
belonging to a particular function.
Also fixed a bug in DisassemblerLLVM where the disassembler
assumed there was an AddressRange available even when it was
NULL.
llvm-svn: 109209
and moved it to its own header file for cleanliness.
Added more logging to ClangFunction so that we can
diagnose crashes in the executing expression.
Added code to extract the result of the expression
from the struct that is passed to the JIT-compiled
code.
llvm-svn: 109199
defines that are in "llvm/Support/MachO.h". This should allow ObjectFileMachO
and ObjectContainerUniversalMachO to be able to be cross compiled in Linux.
Also did some cleanup on the ASTType by renaming it to ClangASTType and
renaming the header file. Moved a lot of "AST * + opaque clang type *"
functionality from lldb_private::Type over into ClangASTType.
llvm-svn: 109046
used by the JIT compiled expression, including the
result of the expression.
Also added a new class, ASTType, which encapsulates an
opaque Clang type and its associated AST context.
Refactored ClangExpressionDeclMap to use ASTTypes,
significantly reducing the possibility of mixups of
types from different AST contexts.
llvm-svn: 108965
to correctly unfold constant-folded global variables.
Also added code to JIT the expression. Simple
expressions are now JIT compiled successfully.
llvm-svn: 108380
prepare IR for execution in the target. Wired the
expression command to use this IR transformer when
conversion to DWARF fails, and wired conversion to
DWARF to always fail (well, we don't generate any
DWARF...)
llvm-svn: 107559
an expression, adding code to put the value of the
last expression (if there is one) into a variable
and write the address of that variable to a global
pointer.
llvm-svn: 107419
intelligently. The four name types we currently have are:
eFunctionNameTypeFull = (1 << 1), // The function name.
// For C this is the same as just the name of the function
// For C++ this is the demangled version of the mangled name.
// For ObjC this is the full function signature with the + or
// - and the square brackets and the class and selector
eFunctionNameTypeBase = (1 << 2), // The function name only, no namespaces or arguments and no class
// methods or selectors will be searched.
eFunctionNameTypeMethod = (1 << 3), // Find function by method name (C++) with no namespace or arguments
eFunctionNameTypeSelector = (1 << 4) // Find function by selector name (ObjC) names
this allows much more flexibility when setting breakoints:
(lldb) breakpoint set --name main --basename
(lldb) breakpoint set --name main --fullname
(lldb) breakpoint set --name main --method
(lldb) breakpoint set --name main --selector
The default:
(lldb) breakpoint set --name main
will inspect the name "main" and look for any parens, or if the name starts
with "-[" or "+[" and if any are found then a full name search will happen.
Else a basename search will be the default.
Fixed some command option structures so not all options are required when they
shouldn't be.
Cleaned up the breakpoint output summary.
Made the "image lookup --address <addr>" output much more verbose so it shows
all the important symbol context results. Added a GetDescription method to
many of the SymbolContext objects for the more verbose output.
llvm-svn: 107075
- Rationalized EvaluateExpression to remove a lot
of nesting; also added comments to make it easy
to find what's happening where
- Made ExecuteRawCommandString subcontract out to
EvaluateExpression
- Minor logging improvements
llvm-svn: 106703