These includes have been deprecated in favor of BuiltinDialect.h, which contains the definitions of ModuleOp and FuncOp.
Differential Revision: https://reviews.llvm.org/D91572
This revision adds a helper function to hoist vector.transfer_read /
vector.transfer_write pairs out of immediately enclosing scf::ForOp
iteratively, if the following conditions are true:
1. The 2 ops access the same memref with the same indices.
2. All operands are invariant under the enclosing scf::ForOp.
3. No uses of the memref either dominate the transfer_read or are
dominated by the transfer_write (i.e. no aliasing between the write and
the read across the loop)
To improve hoisting opportunities, call the `moveLoopInvariantCode` helper
function on the candidate loop above which to hoist. Hoisting the transfers
results in scf::ForOp yielding the value that originally transited through
memory.
This revision additionally exposes `moveLoopInvariantCode` as a helper in
LoopUtils.h and updates SliceAnalysis to support return scf::For values and
allow hoisting across multiple scf::ForOps.
Differential Revision: https://reviews.llvm.org/D81199
Summary:
This is much cleaner, and fits the same structure as many other tablegen backends. This was not done originally as the CRTP in the pass classes made it overly verbose/complex.
Differential Revision: https://reviews.llvm.org/D77367
This revision removes all of the CRTP from the pass hierarchy in preparation for using the tablegen backend instead. This creates a much cleaner interface in the C++ code, and naturally fits with the rest of the infrastructure. A new utility class, PassWrapper, is added to replicate the existing behavior for passes not suitable for using the tablegen backend.
Differential Revision: https://reviews.llvm.org/D77350
This revision adds support for generating utilities for passes such as options/statistics/etc. that can be inferred from the tablegen definition. This removes additional boilerplate from the pass, and also makes it easier to remove the reliance on the pass registry to provide certain things(e.g. the pass argument).
Differential Revision: https://reviews.llvm.org/D76659
This will greatly simplify a number of things related to passes:
* Enables generation of pass registration
* Enables generation of boiler plate pass utilities
* Enables generation of pass documentation
This revision focuses on adding the basic structure and adds support for generating the registration for passes in the Transforms/ directory. Future revisions will add more support and move more passes over.
Differential Revision: https://reviews.llvm.org/D76656
HasNoSideEffect can now be implemented using the MemoryEffectInterface, removing the need to check multiple things for the same information. This also removes an easy foot-gun for users as 'Operation::hasNoSideEffect' would ignore operations that dynamically, or recursively, have no side effects. This also leads to an immediate improvement in some of the existing users, such as DCE, now that they have access to more information.
Differential Revision: https://reviews.llvm.org/D76036
Summary:
Interfaces/ is the designated directory for these types of interfaces, and also removes the need for including them directly in IR/.
Differential Revision: https://reviews.llvm.org/D75886
Summary:
The old interface was a temporary stopgap to allow for implementing simple LICM that took side effects of region operations into account. Now that MLIR has proper support for specifying memory effects, this interface can be deleted.
Differential Revision: https://reviews.llvm.org/D74441
This is an initial step to refactoring the representation of OpResult as proposed in: https://groups.google.com/a/tensorflow.org/g/mlir/c/XXzzKhqqF_0/m/v6bKb08WCgAJ
This change will make it much simpler to incrementally transition all of the existing code to use value-typed semantics.
PiperOrigin-RevId: 286844725
This change refactors and cleans up the implementation of the operation walk methods. After this refactoring is that the explicit template parameter for the operation type is no longer needed for the explicit op walks. For example:
op->walk<AffineForOp>([](AffineForOp op) { ... });
is now accomplished via:
op->walk([](AffineForOp op) { ... });
PiperOrigin-RevId: 266209552
Switch to C++14 standard method as llvm::make_unique has been removed (
https://reviews.llvm.org/D66259). Also mark some targets as c++14 to ease next
integrates.
PiperOrigin-RevId: 263953918
Since raw pointers are always passed around for IR construct without
implying any ownership transfer, it can be error prone to have implicit
ownership transferred the same way.
For example this code can seem harmless:
Pass *pass = ....
pm.addPass(pass);
pm.addPass(pass);
pm.run(module);
PiperOrigin-RevId: 263053082
In most places, this is just a name change (with the exception of affine.dma_start swapping the operand positions of its tag memref and num_elements operands).
Significant code changes occur here:
*) Vectorization: LoopAnalysis.cpp, Vectorize.cpp
*) Affine Transforms: Transforms/Utils/Utils.cpp
PiperOrigin-RevId: 256395088
Trying to activate both LLVM and MLIR passes in mlir-cpu-runner showed name collisions when registering pass names.
One possible way of disambiguating that should also work across dialects is to prepend the dialect name to the passes that specifically operate on that dialect.
With this CL, mlir-cpu-runner tests still run when both LLVM and MLIR passes are registered
--
PiperOrigin-RevId: 246539917