Enables specifying the documentation for dialect along with defining the ops of the dialect. The doc generator will be expanded in follow up to emit the documentation in the autogenerated files. This is precursor to allowing common base for all ops in a dialect.
All the dialect documentation is super sparse and just added as placeholder.
I was tempted (and started) to move ConstantOp to be generated too, but this will be easier post adding extra_methods, so deferring until then.
--
PiperOrigin-RevId: 245759984
Certain ops can have multiple variadic operands/results, e.g., `tf.DynamicStitch`.
Even if an op has only one variadic operand/result, it is not necessarily the
very last one, e.g., `tf.RaggedGather`. This CL enhances TableGen subsystem to be
able to represent such cases.
In order to deduce the operand/result value range for each variadic operand,
currently we only support variadic operands/results all of the same size.
So two new traits, `SameVariadicOperandSize` and `SameVariadicResultSize` are
introduced.
--
PiperOrigin-RevId: 245310628
Both cOp and tAttr were used to perform some native C++ code expression.
Unifying them simplifies the concepts and reduces cognitive burden.
--
PiperOrigin-RevId: 244731946
This allows accessing those bound source ops in result patterns, which can be
useful for invoking native C++ op creation.
We bind the op entirely here because ops can have multiple results. Design a
approach to bind to a specific result is not the concern of this commit.
--
PiperOrigin-RevId: 244724750
For ops with the SameValueType trait, we generate a builder without requiring
result type; we get the result type from the operand. However, if the operand
is variadic, we need to index into the first value in the pack.
--
PiperOrigin-RevId: 243866647
This CL changes various predicates and rewrite rules to use $-placeholders and
`tgfmt` as the driver for substitution. This will make the predicates and rewrite
rules more consistent regarding their arguments and more readable.
--
PiperOrigin-RevId: 243250739
To support automatically constraint composition of ArrayAttr, a new
predicate combiner, Concat, is introduced. It prepends a prefix and
appends a postfix to a child predicate's final predicate string.
--
PiperOrigin-RevId: 242121186
Previously, attribute constraints are basically unused: we set true for almost
anything. This CL refactors common attribute kinds and sets constraints on
them properly. And fixed verification failures found by this change.
A noticeable one is that certain TF ops' attributes are required to be 64-bit
integer, but the corresponding TFLite ops expect 32-bit integer attributes.
Added bitwidth converters to handle this difference.
--
PiperOrigin-RevId: 241944008
We can bind symbols to op arguments/results in source pattern and op results in
result pattern. Previously resolving these symbols is scattered across
RewriterGen.cpp. This CL aggregated them into a `PatternSymbolResolver` class.
While we are here, this CL also cleans up tests for patterns to make them more
focused. Specifically, one-op-one-result.td is superseded by pattern.td;
pattern-tAttr.td is simplified; pattern-bound-symbol.td is added for the change
in this CL.
--
PiperOrigin-RevId: 241913973
Previously we bundle the existence check and the MLIR attribute kind check
in one call. Further constraints (like element bitwidth) have to be split
into following checks. That is not a nice separation given that we have more
checks for constraints. Instead, this CL changes to generate a local variable
for every attribute, check its existence first, then check the constraints.
Creating a local variable for each attribute also avoids querying it multiple
times using the raw getAttr() API. This is a win for both performance the
readability of the generated code.
This CL also changed the error message to be more greppable by delimiting
the error message from constraints with boilerplate part with colon.
--
PiperOrigin-RevId: 241906132
This CL looses the requirement that all result patterns in a rewrite rule must
replace a result of the root op in the source pattern. Now only the last N
result pattern-generated ops are used to replace a N-result source op.
This allows to generate additional ops to aid building up final ops used to
replace the source op.
--
PiperOrigin-RevId: 241783192
OptionalAttr is just wrapping around the actual attribute; so it should just use
the actual attribute's `convertFromStorage` to read the value and wrap it around
with `Optional<>` to return. Previously it was mandating how the actual attribute
reads the value with `{0}.getValue()`.
--
PiperOrigin-RevId: 241762355
Attributes can have default values or be optional. Checking the validity of
attributes in aggregate builder should consider that. And to be accurate,
we should check all required attributes are indeed provided in the list.
This is actually duplicating the work done by verifier. Checking the validity
of attributes should be the responsiblity of verifiers. This CL removes
the assertion for attributes in aggregate builders for the above reason.
(Assertions for operands/results are still kept since they are trivial.)
Also added more tests for aggregate builders.
--
PiperOrigin-RevId: 241746059
This CL introduces Confined as a general mechanism to compose complex attribute
constraints out of more primitive ones. It's particularly useful for automatically
generating op definitions from some external source, where we can have random
combinations of primitive constraints and it would be impractical to define a case
for each of such combination.
Two primitive attribute constraints, IntMinValue and ArrayMinCount, are added to be
used together with Confined.
--
PiperOrigin-RevId: 241435955
This CL adds EnumAttr as a general mechanism for modelling enum attributes. Right now
it is using StringAttr under the hood since MLIR does not have native support for enum
attributes.
--
PiperOrigin-RevId: 241334043
A integer number can be specified in the pattern definition and used as the
adjustment to the default benefit score in the generated rewrite pattern C++
definition.
PiperOrigin-RevId: 240994192
The `Builder*` parameter is unused in both generated build() methods so that we can
leave it unnamed. Changed stand-alone parameter build() to take `_tblgen_state` instead
of `result` to allow `result` to avoid having name collisions with op operand,
attribute, or result.
PiperOrigin-RevId: 240637700
Before this CL, the result type of the pattern match results need to be as same
as the first operand type, operand broadcast type or a generic tensor type.
This CL adds a new trait to set the result type by attribute. For example, the
TFL_ConstOp can use this to set the output type to its value attribute.
PiperOrigin-RevId: 240441249
inherited constructors, which is cleaner and means you can now use DimOp()
to get a null op, instead of having to use Instruction::getNull<DimOp>().
This removes another 200 lines of code.
PiperOrigin-RevId: 240068113
This should probably be changed to instead use the negated form (e.g., get predicate + negate it + get resulting template), but this fixes it locally.
PiperOrigin-RevId: 240067116
We just need a way to unpack ArrayRef<ValueHandle> to ArrayRef<Value*>.
No need to expose this to the user.
This reduces the cognitive overhead for the tutorial.
PiperOrigin-RevId: 240037425
tblgen be non-const. This requires introducing some const_cast's at the
moment, but those (and lots more stuff) will disappear in subsequent patches.
This significantly simplifies those patches because the various tblgen op emitters
get adjusted.
PiperOrigin-RevId: 239954566
Enable users specifying operand type constraint combinations (e.g., considering multiple operands). Some of these will be refactored (particularly the OpBase change and that should also not be needed to be done by most users), but the focus is more on user side (shown in test). The generated code for this does not take any known facts into account or perform any simplification.
Start with 2 primities to specify 1) whether an operand has a specific element type, and 2) whether an operand's element type matches another operands element type.
PiperOrigin-RevId: 239875712
Previously we emit both op declaration and definition into one file and include it
in *Ops.h. That pulls in lots of implementation details in the header file and we
cannot hide symbols local to implementation. This CL splits them to provide a cleaner
interface.
The way how we define custom builders in TableGen is changed accordingly because now
we need to distinguish signatures and implementation logic. Some custom builders with
complicated logic now can be moved to be implemented in .cpp entirely.
PiperOrigin-RevId: 239509594
Add support to create a new attribute from multiple attributes. It extended the
DagNode class to represent attribute creation dag. It also changed the
RewriterGen::emitOpCreate method to support this nested dag emit.
An unit test is added.
PiperOrigin-RevId: 238090229
There are two ways that we can attach a name to a DAG node:
1) (Op:$name ...)
2) (Op ...):$name
The problem with 2) is that we cannot do it on the outmost DAG node in a tree.
Switch from 2) to 1).
PiperOrigin-RevId: 237513962
This CL added the ability to generate multiple ops using multiple result
patterns, with each of them replacing one result of the matched source op.
Specifically, the syntax is
```
def : Pattern<(SourceOp ...),
[(ResultOp1 ...), (ResultOp2 ...), (ResultOp3 ...)]>;
```
Assuming `SourceOp` has three results.
Currently we require that each result op must generate one result, which
can be lifted later when use cases arise.
To help with cases that certain output is unused and we don't care about it,
this CL also introduces a new directive: `verifyUnusedValue`. Checks will
be emitted in the `match()` method to make sure if the corresponding output
is not unused, `match()` returns with `matchFailure()`.
PiperOrigin-RevId: 237513904
The existing implementation of the Op definition generator assumes and relies
on the fact that native Op Attributes appear after its value-based operands in
the Arguments list. Furthermore, the same order is used in the generated
`build` function for the operation. This is not desirable for some operations
with mandatory attributes that would want the attribute to appear upfront for
better consistency with their textual representation, for example `cmpi` would
prefer the `predicate` attribute to be foremost in the argument list.
Introduce support for using attributes and operands in the Arguments DAG in no
particular order. This is achieved by maintaining a list of Arguments that
point to either the value or the attribute and are used to generate the `build`
method.
PiperOrigin-RevId: 237002921
The recently introduced support for generating MLIR Operations with optional
attributes did not handle the formatted string emission properly, in particular
it did not escape `{` and `}` in calls to `formatv` leading to assertions
during TableGen op definition generation. Fix this by splitting out the
unncessary braces from the format string. Additionally, fix the emission of
the builder argument comment to correctly indicate which attributes are indeed
optional and which are not.
PiperOrigin-RevId: 236832230
This CL changes dialect op source files (.h, .cpp, .td) to follow the following
convention:
<full-dialect-name>/<dialect-namespace>Ops.{h|cpp|td}
Builtin and standard dialects are specially treated, though. Both of them do
not have dialect namespace; the former is still named as BuiltinOps.* and the
latter is named as Ops.*.
Purely mechanical. NFC.
PiperOrigin-RevId: 236371358
Previously we have `auto pos = std::string::find(...) != std::string::npos` as
if condition to control substring substitution. Instead of the position for the
found substring, `pos` will be a boolean value indicating found nor not. Then
used as the replace start position, we were always replacing starting from 0 or
1. If the replaced substring also has the pattern to be matched, we'll see
an infinite loop.
PiperOrigin-RevId: 235504681
Expose the result types of edsc::Expr, which are now stored for all types of
Exprs and not only for the variadic ones. Require return types when an Expr is
constructed, if it will ever have some. An empty return type list is
interpreted as an Expr that does not create a value (e.g. `return` or `store`).
Conceptually, all edss::Exprs are now typed, with the type being a (potentially
empty) tuple of return types. Unbound expressions and Bindables must now be
constructed with a specific type they will take. This makes EDSC less
evidently type-polymorphic, but we can still write generic code such as
Expr sumOfSquares(Expr lhs, Expr rhs) { return lhs * lhs + rhs * rhs; }
and use it to construct different typed expressions as
sumOfSquares(Bindable(IndexType::get(ctx)), Bindable(IndexType::get(ctx)));
sumOfSquares(Bindable(FloatType::getF32(ctx)),
Bindable(FloatType::getF32(ctx)));
On the positive side, we get the following.
1. We can now perform type checking when constructing Exprs rather than during
MLIR emission. Nevertheless, this is still duplicates the Op::verify()
until we can factor out type checking from that.
2. MLIREmitter is significantly simplified.
3. ExprKind enum is only used for actual kinds of expressions. Data structures
are converging with AbstractOperation, and the users can now create a
VariadicExpr("canonical_op_name", {types}, {exprs}) for any operation, even
an unregistered one without having to extend the enum and make pervasive
changes to EDSCs.
On the negative side, we get the following.
1. Typed bindables are more verbose, even in Python.
2. We lose the ability to do print debugging for higher-level EDSC abstractions
that are implemented as multiple MLIR Ops, for example logical disjunction.
This is the step 2/n towards making EDSC extensible.
***
Move MLIR Op construction from MLIREmitter::emitExpr to Expr::build since Expr
now has sufficient information to build itself.
This is the step 3/n towards making EDSC extensible.
Both of these strive to minimize the amount of irrelevant changes. In
particular, this introduces more complex pretty-printing for affine and binary
expression to make sure tests continue to pass. It also relies on string
comparison to identify specific operations that an Expr produces.
PiperOrigin-RevId: 234609882
Previously we were using PatternRewrite::replaceOpWithNewOp() to both create the new op
inline and rewrite the matched op. That does not work well if we want to generate multiple
ops in a sequence. To support that, this CL changed to assign each newly created op to a
separate variable.
This CL also refactors how PatternEmitter performs the directive dispatch logic.
PiperOrigin-RevId: 233206819
This CL added a tblgen::DagLeaf wrapper class with several helper methods for handling
DAG arguments. It helps to refactor the rewriter generation logic to be more higher
level.
This CL also added a tblgen::ConstantAttr wrapper class for constant attributes.
PiperOrigin-RevId: 232050683
This CL applies the following simplifications to EDSCs:
1. Rename Block to StmtList because an MLIR Block is a different, not yet
supported, notion;
2. Rework Bindable to drop specific storage and just use it as a simple wrapper
around Expr. The only value of Bindable is to force a static cast when used by
the user to bind into the emitter. For all intended purposes, Bindable is just
a lightweight check that an Expr is Unbound. This simplifies usage and reduces
the API footprint. After playing with it for some time, it wasn't worth the API
cognition overhead;
3. Replace makeExprs and makeBindables by makeNewExprs and copyExprs which is
more explicit and less easy to misuse;
4. Add generally useful functionality to MLIREmitter:
a. expose zero and one for the ubiquitous common lower bounds and step;
b. add support to create already bound Exprs for all function arguments as
well as shapes and views for Exprs bound to memrefs.
5. Delete Stmt::operator= and replace by a `Stmt::set` method which is more
explicit.
6. Make Stmt::operator Expr() explicit.
7. Indexed.indices assertions are removed to pave the way for expressing slices
and views as well as to work with 0-D memrefs.
The CL plugs those simplifications with TableGen and allows emitting a full MLIR function for
pointwise add.
This "x.add" op is both type and rank-agnostic (by allowing ArrayRef of Expr
passed to For loops) and opens the door to spinning up a composable library of
existing and custom ops that should automate a lot of the tedious work in
TF/XLA -> MLIR.
Testing needs to be significantly improved but can be done in a separate CL.
PiperOrigin-RevId: 231982325
This CL mandated TypeConstraint and Type to provide descriptions and fixed
various subclasses and definitions to provide so. The purpose is to enforce
good documentation; using empty string as the default just invites oversight.
PiperOrigin-RevId: 231579629
Similar to op operands and attributes, use DAG to specify operation's results.
This will allow us to provide names and matchers for outputs.
Also Defined `outs` as a marker to indicate the start of op result list.
PiperOrigin-RevId: 231422455
This CL performs a bunch of cleanups related to EDSCs that are generally
useful in the context of using them with a simple wrapping C API (not in this
CL) and with simple language bindings to Python and Swift.
PiperOrigin-RevId: 230066505
This CL fixes a misunderstanding in how to build DimOp which triggered
execution issues in the CPU path.
The problem is that, given a `memref<?x4x?x8x?xf32>`, the expressions to
construct the dynamic dimensions should be:
`dim %arg, 0 : memref<?x4x?x8x?xf32>`
`dim %arg, 2 : memref<?x4x?x8x?xf32>`
and
`dim %arg, 4 : memref<?x4x?x8x?xf32>`
Before this CL, we wold construct:
`dim %arg, 0 : memref<?x4x?x8x?xf32>`
`dim %arg, 1 : memref<?x4x?x8x?xf32>`
`dim %arg, 2 : memref<?x4x?x8x?xf32>`
and expect the other dimensions to be constants.
This assumption seems consistent at first glance with the syntax of alloc:
```
%tensor = alloc(%M, %N, %O) : memref<?x4x?x8x?xf32>
```
But this was actuallyincorrect.
This CL also makes the relevant functions available to EDSCs and removes
duplication of the incorrect function.
PiperOrigin-RevId: 229622766
This is mostly plumbing to start allowing testing EDSC lowering. Prototype specifying reference implementation using verbose format without any generation/binding support. Add test pass that dumps the constructed EDSC (of which there can only be one). The idea is to enable iterating from multiple sides, this is wrong on many dimensions at the moment.
PiperOrigin-RevId: 229570535
In TableGen definitions, the "Type" class has been used for types of things
that can be stored in Attributes, but not necessarily present in the MLIR type
system. As a consequence, records like "String" or "DerviedAttrBody" were of
class "Type", which can be confusing. Furthermore, the "builderCall" field of
the "Type" class serves only for attribute construction. Some TableGen "Type"
subclasses that correspond to MLIR kinds of types do not have a canonical way
of construction only from the data available in TableGen, e.g. MemRefType would
require the list of affine maps. This leads to a conclusion that the entities
that describe types of objects appearing in Attributes should be independent of
"Type": they have some properties "Type"s don't and vice versa.
Do not parameterize Tablegen "Attr" class by an instance of "Type". Instead,
provide a "constBuilderCall" field that can be used to build an attribute from
a constant value stored in TableGen instead of indirectly going through
Attribute.Type.builderCall. Some attributes still don't have a
"constBuilderCall" because they used to depend on types without a
"builderCall".
Drop definitions of class "Type" that don't correspond to MLIR Types. Provide
infrastructure to define type-dependent attributes and string-backed attributes
for convenience.
PiperOrigin-RevId: 229570087
MLIR has support for type-polymorphic instructions, i.e. instructions that may
take arguments of different types. For example, standard arithmetic operands
take scalars, vectors or tensors. In order to express such instructions in
TableGen, we need to be able to verify that a type object satisfies certain
constraints, but we don't need to construct an instance of this type. The
existing TableGen definition of Type requires both. Extract out a
TypeConstraint TableGen class to define restrictions on types. Define the Type
TableGen class as a subclass of TypeConstraint for consistency. Accept records
of the TypeConstraint class instead of the Type class as values in the
Arguments class when defining operators.
Replace the predicate logic TableGen class based on conjunctive normal form
with the predicate logic classes allowing for abitrary combinations of
predicates using Boolean operators (AND/OR/NOT). The combination is
implemented using simple string rewriting of C++ expressions and, therefore,
respects the short-circuit evaluation order. No logic simplification is
performed at the TableGen level so all expressions must be valid C++.
Maintaining CNF using TableGen only would have been complicated when one needed
to introduce top-level disjunction. It is also unclear if it could lead to a
significantly simpler emitted C++ code. In the future, we may replace inplace
predicate string combination with a tree structure that can be simplified in
TableGen's C++ driver.
Combined, these changes allow one to express traits like ArgumentsAreFloatLike
directly in TableGen instead of relying on C++ trait classes.
PiperOrigin-RevId: 229398247