* AffineStructures has moved to IR.
* simplifyAffineExpr/simplifyAffineMap/getFlattenedAffineExpr have moved to IR.
* makeComposedAffineApply/fullyComposeAffineMapAndOperands have moved to AffineOps.
* ComposeAffineMaps is replaced by AffineApplyOp::canonicalize and deleted.
PiperOrigin-RevId: 232586468
The const folding logic is structurally similar, so use a template
to abstract the common part.
Moved mul(x, 0) to a legalization pattern to be consistent with
mul(x, 1).
Also promoted getZeroAttr() to be a method on Builder since it is
expected to be frequently used.
PiperOrigin-RevId: 228891989
This CL is the 5th on the path to simplifying AffineMap composition.
This removes the distinction between normalized single-result AffineMap and
more general composed multi-result map.
One nice byproduct of making the implementation driven by single-result is
that the multi-result extension is a trivial change: the implementation is
still single-result and we just use:
```
unsigned idx = getIndexOf(...);
map.getResult(idx);
```
This CL also fixes an AffineNormalizer implementation issue related to symbols.
Namely it stops performing substitutions on symbols in AffineNormalizer and
instead concatenates them all to be consistent with the call to
`AffineMap::compose(AffineMap)`. This latter call to `compose` cannot perform
simplifications of symbols coming from different maps based on positions only:
i.e. dims are applied and renumbered but symbols must be concatenated.
The only way to determine whether symbols from different AffineApply are the
same is to look at the concrete values. The canonicalizeMapAndOperands is thus
extended with behavior to support replacing operands that appear multiple
times.
Lastly, this CL demonstrates that the implementation is correct by rewriting
ComposeAffineMaps using only `makeComposedAffineApply`. The implementation
uses a matcher because AffineApplyOp are introduced as composed operations on
the fly instead of iteratively forwardSubstituting. For this purpose, a walker
would revisit freshly introduced AffineApplyOp. Regardless, ComposeAffineMaps
is scheduled to disappear, this CL replaces the implementation based on
iterative `forwardSubstitute` by a composed-by-construction
`makeComposedAffineApply`.
Remaining calls to `forwardSubstitute` will be removed in the next CL.
PiperOrigin-RevId: 228830443
symbols.
Included with this is some other infra:
- Testcases for other canonicalizations that I will implement next.
- Some helpers in AffineMap/Expr for doing simple walks without defining whole
visitor classes.
- A 'replaceDimsAndSymbols' facility that I'll be using to simplify maps and
exprs, e.g. to fold one constant into a mapping and to drop/renumber unused dims.
- Allow index (and everything else) to work in memref's, as we previously
discussed, to make the testcase easier to write.
- A "getAffineBinaryExpr" helper to produce a binop when you know the kind as
an enum.
This line of work will eventually subsume the ComposeAffineApply pass, but it is no where close to that yet :-)
PiperOrigin-RevId: 227852951
The entire compiler now looks at structural properties of the function (e.g.
does it have one block, does it contain an if/for stmt, etc) so the only thing
holding up this difference is round tripping through the parser/printer syntax.
Removing this shrinks the compile by ~140LOC.
This is step 31/n towards merging instructions and statements. The last step
is updating the docs, which I will do as a separate patch in order to split it
from this mostly mechanical patch.
PiperOrigin-RevId: 227540453
printing the entry block in a CFG function's argument line. Since I'm touching
all of the testcases anyway, change the argument list from printing as
"%arg : type" to "%arg: type" which is more consistent with bb arguments.
In addition to being more consistent, this is a much nicer look for cfg functions.
PiperOrigin-RevId: 227240069
- Added a mechanism for specifying pattern matching more concisely like LLVM.
- Added support for canonicalization of addi/muli over vector/tensor splat
- Added ValueType to Attribute class hierarchy
- Allowed creating constant splat
PiperOrigin-RevId: 219149621
1) We incorrectly reassociated non-reassociative operations like subi, causing
miscompilations.
2) When constant folding, we didn't add users of the new constant back to the
worklist for reprocessing, causing us to miss some cases (pointed out by
Uday).
The code for tensorflow/mlir#2 is gross, but I'll add the new APIs in a followup patch.
PiperOrigin-RevId: 218803984
is a straight-forward change, but required adding missing moveBefore() methods
on operations (requiring moving some traits around to make C++ happy). This
also fixes a constness issue with the getBlock/getFunction() methods on
Instruction, and adds a missing getFunction() method on MLFuncBuilder.
PiperOrigin-RevId: 218523905
- Add a few canonicalization patterns to fold memref_cast into
load/store/dealloc.
- Canonicalize alloc(constant) into an alloc with a constant shape followed by
a cast.
- Add a new PatternRewriter::updatedRootInPlace API to make this more convenient.
SimplifyAllocConst and the testcase is heavily based on Uday's implementation work, just
in a different framework.
PiperOrigin-RevId: 218361237
out canonicalization pass to drive it, and a simple (x-x) === 0 pattern match
as a test case.
There is a tremendous number of improvements that need to land, and the
matcher/rewriter and patterns will be split out of this file, but this is a
starting point.
PiperOrigin-RevId: 216788604