This patch teaches the Instruction Combiner how to fold a cttz/ctlz followed by
a icmp plus select into a single cttz/ctlz with flag 'is_zero_undef' cleared.
Added test InstCombine/select-cmp-cttz-ctlz.ll.
llvm-svn: 227197
LoopRotate wanted to avoid live range interference by looking at the
uses of a Value in the loop latch and seeing if any lied outside of the
loop. We would wrongly perform this operation on Constants.
This fixes PR22337.
llvm-svn: 227171
These tests check that the combination of 227110 (cross block query inst) and 227112 (volatile load semantics) work together properly to allow PRE in cases where a loop contains a volatile access.
llvm-svn: 227146
An unreachable default destination can be exploited by other optimizations and
allows for more efficient lowering. Both the SDag switch lowering and
LowerSwitch can exploit unreachable defaults.
Also make TurnSwitchRangeICmp handle switches with unreachable default.
This is kind of separate change, but it cannot be tested without the change
above, and I don't want to land the change above without this since that would
regress other tests.
Differential Revision: http://reviews.llvm.org/D6471
llvm-svn: 227125
According to my reading of the LangRef, volatiles are only ordered with respect to other volatiles. It is entirely legal and profitable to forward unrelated loads over the volatile load. This patch implements this for GVN by refining the transition rules MemoryDependenceAnalysis uses when encountering a volatile.
The added test cases show where the extra flexibility is profitable for local dependence optimizations. I have a related change (227110) which will extend this to non-local dependence (i.e. PRE), but that's essentially orthogonal to the semantic change in this patch. I have tested the two together and can confirm that PRE works over a volatile load with both changes. I will be submitting a PRE w/volatiles test case seperately in the near future.
Differential Revision: http://reviews.llvm.org/D6901
llvm-svn: 227112
This change is mostly motivated by exposing information about the original query instruction to the actual scanning work in getPointerDependencyFrom when used by GVN PRE. In a follow up change, I will use this to be more precise with regards to the semantics of volatile instructions encountered in the scan of a basic block.
Worth noting, is that this change (despite appearing quite simple) is not semantically preserving. By providing more information to the helper routine, we allow some optimizations to kick in that weren't previously able to (when called from this code path.) In particular, we see that treatment of !invariant.load becomes more precise. In theory, we might see a difference with an ordered/atomic instruction as well, but I'm having a hard time actually finding a test case which shows that.
Test wise, I've included new tests for !invariant.load which illustrate this difference. I've also included some updated TBAA tests which highlight that this change isn't needed for that optimization to kick in - it's handled inside alias analysis itself.
Eventually, it would be nice to factor the !invariant.load handling inside alias analysis as well.
Differential Revision: http://reviews.llvm.org/D6895
llvm-svn: 227110
This just lifts the logic into a static helper function, sinks the
legacy pass to be a trivial wrapper of that helper fuction, and adds
a trivial wrapper for the new PM as well. Not much to see here.
I switched a test case to run in both modes, but we have to strip the
dead prototypes separately as that pass isn't in the new pass manager
(yet).
llvm-svn: 226999
This is exciting as this is a much more involved port. This is
a complex, existing transformation pass. All of the core logic is shared
between both old and new pass managers. Only the access to the analyses
is separate because the actual techniques are separate. This also uses
a bunch of different and interesting analyses and is the first time
where we need to use an analysis across an IR layer.
This also paves the way to expose instcombine utility functions. I've
got a static function that implements the core pass logic over
a function which might be mildly interesting, but more interesting is
likely exposing a routine which just uses instructions *already in* the
worklist and combines until empty.
I've switched one of my favorite instcombine tests to run with both as
well to make sure this keeps working.
llvm-svn: 226987
SimplifyCFG currently does this transformation, but I'm planning to remove that
to allow other passes, such as this one, to exploit the unreachable default.
This patch takes care to keep track of what case values are unreachable even
after the transformation, allowing for more efficient lowering.
Differential Revision: http://reviews.llvm.org/D6697
llvm-svn: 226934
This reverts commit r176827.
Björn Steinbrink pointed out that this didn't actually fix the bug
(PR15555) it was attempting to fix.
With this reverted, we can now remove landingpad cleanups that
immediately resume unwinding, converting the invoke to a call.
llvm-svn: 226850
There are places where the inductive range check elimination pass
depends on two llvm::Values or llvm::SCEVs to be of the same
llvm::Type when they do not need to be. This patch relaxes those
restrictions (by bailing out of the optimization if the types
mismatch), and adds test cases to trigger those paths.
These issues were found by bootstrapping clang with IRCE running in
the -O3 pass ordering.
Differential Revision: http://reviews.llvm.org/D7082
llvm-svn: 226793
ever stored to always use a legal integer type if one is available.
Regardless of whether this particular type is good or bad, it ensures we
don't get weird differences in generated code (and resulting
performance) from "equivalent" patterns that happen to end up using
a slightly different type.
After some discussion on llvmdev it seems everyone generally likes this
canonicalization. However, there may be some parts of LLVM that handle
it poorly and need to be fixed. I have at least verified that this
doesn't impede GVN and instcombine's store-to-load forwarding powers in
any obvious cases. Subtle cases are exactly what we need te flush out if
they remain.
Also note that this IR pattern should already be hitting LLVM from Clang
at least because it is exactly the IR which would be produced if you
used memcpy to copy a pointer or floating point between memory instead
of a variable.
llvm-svn: 226781
When two calls from the same MDLocation are inlined they currently get
treated as one inlined function call (creating difficulty debugging,
duplicate variables, etc).
Clang worked around this by including column information on inline calls
which doesn't address LTO inlining or calls to the same function from
the same line and column (such as through a macro). It also didn't
address ctor and member function calls.
By making the inlinedAt locations distinct, every call site has an
explicitly distinct location that cannot be coalesced with any other
call.
This can produce linearly (2x in the worst case where every call is
inlined and the call instruction has a non-call instruction at the same
location) more debug locations. Any increase beyond that are in cases
where the Clang workaround was insufficient and the new scheme is
creating necessary distinct nodes that were being erroneously coalesced
previously.
After this change to LLVM the incomplete workarounds in Clang. That
should reduce the number of debug locations (in a build without column
info, the default on Darwin, not the default on Linux) by not creating
pseudo-distinct locations for every call to an inline function.
(oh, and I made the inlined-at chain rebuilding iterative instead of
recursive because I was having trouble wrapping my head around it the
way it was - open to discussion on the right design for that function
(including going back to a recursive solution))
llvm-svn: 226736
This patch fixes 2 issues in reorderInputsAccordingToOpcode
1) AllSameOpcodeLeft and AllSameOpcodeRight was being calculated incorrectly resulting in code not being vectorized in few cases.
2) Adds logic to reorder operands if we get longer chain of consecutive loads enabling vectorization. Handled the same for cases were we have AltOpcode.
Thanks Michael for inputs and review.
Review: http://reviews.llvm.org/D6677
llvm-svn: 226547
IRCE eliminates range checks of the form
0 <= A * I + B < Length
by splitting a loop's iteration space into three segments in a way
that the check is completely redundant in the middle segment. As an
example, IRCE will convert
len = < known positive >
for (i = 0; i < n; i++) {
if (0 <= i && i < len) {
do_something();
} else {
throw_out_of_bounds();
}
}
to
len = < known positive >
limit = smin(n, len)
// no first segment
for (i = 0; i < limit; i++) {
if (0 <= i && i < len) { // this check is fully redundant
do_something();
} else {
throw_out_of_bounds();
}
}
for (i = limit; i < n; i++) {
if (0 <= i && i < len) {
do_something();
} else {
throw_out_of_bounds();
}
}
IRCE can deal with multiple range checks in the same loop (it takes
the intersection of the ranges that will make each of them redundant
individually).
Currently IRCE does not do any profitability analysis. That is a
TODO.
Please note that the status of this pass is *experimental*, and it is
not part of any default pass pipeline. Having said that, I will love
to get feedback and general input from people interested in trying
this out.
This pass was originally r226201. It was reverted because it used C++
features not supported by MSVC 2012.
Differential Revision: http://reviews.llvm.org/D6693
llvm-svn: 226238
The change used C++11 features not supported by MSVC 2012. I will fix
the change to use things supported MSVC 2012 and recommit shortly.
llvm-svn: 226216
IRCE eliminates range checks of the form
0 <= A * I + B < Length
by splitting a loop's iteration space into three segments in a way
that the check is completely redundant in the middle segment. As an
example, IRCE will convert
len = < known positive >
for (i = 0; i < n; i++) {
if (0 <= i && i < len) {
do_something();
} else {
throw_out_of_bounds();
}
}
to
len = < known positive >
limit = smin(n, len)
// no first segment
for (i = 0; i < limit; i++) {
if (0 <= i && i < len) { // this check is fully redundant
do_something();
} else {
throw_out_of_bounds();
}
}
for (i = limit; i < n; i++) {
if (0 <= i && i < len) {
do_something();
} else {
throw_out_of_bounds();
}
}
IRCE can deal with multiple range checks in the same loop (it takes
the intersection of the ranges that will make each of them redundant
individually).
Currently IRCE does not do any profitability analysis. That is a
TODO.
Please note that the status of this pass is *experimental*, and it is
not part of any default pass pipeline. Having said that, I will love
to get feedback and general input from people interested in trying
this out.
Differential Revision: http://reviews.llvm.org/D6693
llvm-svn: 226201
The bug was introduced in r225282. r225282 assumed that sub X, Y is
the same as add X, -Y. This is not correct if we are going to upgrade
the sub to sub nuw. This change fixes the issue by making the
optimization ignore sub instructions.
Differential Revision: http://reviews.llvm.org/D6979
llvm-svn: 226075
it's defined in the current module. Clang generates this situation for the
C++14 sized deallocation functions, because it generates a weak definition in
case one isn't provided by the C++ runtime library.
llvm-svn: 226069
The transform is somewhat involved, but the basic idea is simple: find
derived pointers that have been offset from the base pointer using gep
and replace the relocate of the derived pointer with a gep to the
relocated base pointer (with the same offset).
llvm-svn: 226060
This commit moves `MDLocation`, finishing off PR21433. There's an
accompanying clang commit for frontend testcases. I'll attach the
testcase upgrade script I used to PR21433 to help out-of-tree
frontends/backends.
This changes the schema for `DebugLoc` and `DILocation` from:
!{i32 3, i32 7, !7, !8}
to:
!MDLocation(line: 3, column: 7, scope: !7, inlinedAt: !8)
Note that empty fields (line/column: 0 and inlinedAt: null) don't get
printed by the assembly writer.
llvm-svn: 226048
It turns out, all callsites of the simplifier are guarded by a check for
CallInst::getCalledFunction (i.e., to make sure the callee is direct).
This check wasn't done when trying to further optimize a simplified fortified
libcall, introduced by a refactoring in r225640.
Fix that, add a testcase, and document the requirement.
llvm-svn: 225895
Now that the way that the partial unrolling threshold for small loops is used
to compute the unrolling factor as been corrected, a slightly smaller threshold
is preferable. This is expected; other targets may need to re-tune as well.
llvm-svn: 225566
When we compute the size of a loop, we include the branch on the backedge and
the comparison feeding the conditional branch. Under normal circumstances,
these don't get replicated with the rest of the loop body when we unroll. This
led to the somewhat surprising behavior that really small loops would not get
unrolled enough -- they could be unrolled more and the resulting loop would be
below the threshold, because we were assuming they'd take
(LoopSize * UnrollingFactor) instructions after unrolling, instead of
(((LoopSize-2) * UnrollingFactor)+2) instructions. This fixes that computation.
llvm-svn: 225565
The previous code assumed that such instructions could not have any uses
outside CaseDest, with the motivation that the instruction could not
dominate CommonDest because CommonDest has phi nodes in it. That simply
isn't true; e.g., CommonDest could have an edge back to itself.
llvm-svn: 225552
doing Load PRE"
It's not really expected to stick around, last time it provoked a weird LTO
build failure that I can't reproduce now, and the bot logs are long gone. I'll
re-revert it if the failures recur.
Original description: Perform Scalar PRE on gep indices that feed loads before
doing Load PRE.
llvm-svn: 225536
The P7 benefits from not have really-small loops so that we either have
multiple dispatch groups in the loop and/or the ability to form more-full
dispatch groups during scheduling. Setting the partial unrolling threshold to
44 seems good, empirically, for the P7. Compared to using no late partial
unrolling, this yields the following test-suite speedups:
SingleSource/Benchmarks/Adobe-C++/simple_types_constant_folding
-66.3253% +/- 24.1975%
SingleSource/Benchmarks/Misc-C++/oopack_v1p8
-44.0169% +/- 29.4881%
SingleSource/Benchmarks/Misc/pi
-27.8351% +/- 12.2712%
SingleSource/Benchmarks/Stanford/Bubblesort
-30.9898% +/- 22.4647%
I've speculatively added a similar setting for the P8. Also, I've noticed that
the unroller does not quite calculate the unrolling factor correctly for really
tiny loops because it neglects to account for the fact that not every loop body
replicant contains an ending branch and counter increment. I'll fix that later.
llvm-svn: 225522
Propagate whether `MDNode`s are 'distinct' through the other types of IR
(assembly and bitcode). This adds the `distinct` keyword to assembly.
Currently, no one actually calls `MDNode::getDistinct()`, so these nodes
only get created for:
- self-references, which are never uniqued, and
- nodes whose operands are replaced that hit a uniquing collision.
The concept of distinct nodes is still not quite first-class, since
distinct-ness doesn't yet survive across `MapMetadata()`.
Part of PR22111.
llvm-svn: 225474
In order to make comdats always explicit in the IR, we decided to make
the syntax a bit more compact for the case of a GlobalObject in a
comdat with the same name.
Just dropping the $name causes problems for
@foo = globabl i32 0, comdat
$bar = comdat ...
and
declare void @foo() comdat
$bar = comdat ...
So the syntax is changed to
@g1 = globabl i32 0, comdat($c1)
@g2 = globabl i32 0, comdat
and
declare void @foo() comdat($c1)
declare void @foo() comdat
llvm-svn: 225302
This is already handled in general when it is known the
conversion can't lose bits with smaller integer types
casted into wider floating point types.
This pattern happens somewhat often in GPU programs that cast
workitem intrinsics to float, which are often compared with 0.
Specifically handle the special case of compares with zero which
should also be known to not lose information. I had a more general
version of this which allows equality compares if the casted float is
exactly representable in the integer, but I'm not 100% confident that
is always correct.
Also fold cases that aren't integers to true / false.
llvm-svn: 225265
Try harder to get rid of bitcast'd calls by ptrtoint/inttoptr'ing
arguments and return values when DataLayout says it is safe to do so.
llvm-svn: 225254
{code}
// loop body
... = a[i] (1)
... = a[i+1] (2)
.......
a[i+1] = .... (3)
a[i] = ... (4)
{code}
The algorithm tries to collect memory access candidates from AliasSetTracker, and then check memory dependences one another. The memory accesses are unique in AliasSetTracker, and a single memory access in AliasSetTracker may map to multiple entries in AccessAnalysis, which could cover both 'read' and 'write'. Originally the algorithm only checked 'write' entry in Accesses if only 'write' exists. This is incorrect and the consequence is it ignored all read access, and finally some RAW and WAR dependence are missed.
For the case given above, if we ignore two reads, the dependence between (1) and (3) would not be able to be captured, and finally this loop will be incorrectly vectorized.
The fix simply inserts a new loop to find all entries in Accesses. Since it will skip most of all other memory accesses by checking the Value pointer at the very beginning of the loop, it should not increase compile-time visibly.
llvm-svn: 225159
assert out of the new pre-splitting in SROA.
This fix makes the code do what was originally intended -- when we have
a store of a load both dealing in the same alloca, we force them to both
be pre-split with identical offsets. This is really quite hard to do
because we can keep discovering problems as we go along. We have to
track every load over the current alloca which for any resaon becomes
invalid for pre-splitting, and go back to remove all stores of those
loads. I've included a couple of test cases derived from PR22093 that
cover the different ways this can happen. While that PR only really
triggered the first of these two, its the same fundamental issue.
The other challenge here is documented in a FIXME now. We end up being
quite a bit more aggressive for pre-splitting when loads and stores
don't refer to the same alloca. This aggressiveness comes at the cost of
introducing potentially redundant loads. It isn't clear that this is the
right balance. It might be considerably better to require that we only
do pre-splitting when we can presplit every load and store involved in
the entire operation. That would give more consistent if conservative
results. Unfortunately, it requires a non-trivial change to the actual
pre-splitting operation in order to correctly handle cases where we end
up pre-splitting stores out-of-order. And it isn't 100% clear that this
is the right direction, although I'm starting to suspect that it is.
llvm-svn: 225149
We assumed the output of a match was a Value, this would cause us to
assert because we would fail a cast<>. Instead, use a helper in the
Operator family to hide the distinction between Value and Constant.
This fixes PR22087.
llvm-svn: 225127
PHI nodes can have zero operands in the middle of a transform. It is
expected that utilities in Analysis don't freak out when this happens.
Note that it is considered invalid to allow these misshapen phi nodes to
make it to another pass.
This fixes PR22086.
llvm-svn: 225126
a pre-splitting pass over loads and stores.
Historically, splitting could cause enough problems that I hamstrung the
entire process with a requirement that splittable integer loads and
stores must cover the entire alloca. All smaller loads and stores were
unsplittable to prevent chaos from ensuing. With the new pre-splitting
logic that does load/store pair splitting I introduced in r225061, we
can now very nicely handle arbitrarily splittable loads and stores. In
order to fully benefit from these smarts, we need to mark all of the
integer loads and stores as splittable.
However, we don't actually want to rewrite partitions with all integer
loads and stores marked as splittable. This will fail to extract scalar
integers from aggregates, which is kind of the point of SROA. =] In
order to resolve this, what we really want to do is only do
pre-splitting on the alloca slices with integer loads and stores fully
splittable. This allows us to uncover all non-integer uses of the alloca
that would benefit from a split in an integer load or store (and where
introducing the split is safe because it is just memory transfer from
a load to a store). Once done, we make all the non-whole-alloca integer
loads and stores unsplittable just as they have historically been,
repartition and rewrite.
The result is that when there are integer loads and stores anywhere
within an alloca (such as from a memcpy of a sub-object of a larger
object), we can split them up if there are non-integer components to the
aggregate hiding beneath. I've added the challenging test cases to
demonstrate how this is able to promote to scalars even a case where we
have even *partially* overlapping loads and stores.
This restores the single-store behavior for small arrays of i8s which is
really nice. I've restored both the little endian testing and big endian
testing for these exactly as they were prior to r225061. It also forced
me to be more aggressive in an alignment test to actually defeat SROA.
=] Without the added volatiles there, we actually split up the weird i16
loads and produce nice double allocas with better alignment.
This also uncovered a number of bugs where we failed to handle
splittable load and store slices which didn't have a begininng offset of
zero. Those fixes are included, and without them the existing test cases
explode in glorious fireworks. =]
I've kept support for leaving whole-alloca integer loads and stores as
splittable even for the purpose of rewriting, but I think that's likely
no longer needed. With the new pre-splitting, we might be able to remove
all the splitting support for loads and stores from the rewriter. Not
doing that in this patch to try to isolate any performance regressions
that causes in an easy to find and revert chunk.
llvm-svn: 225074
stores.
When there are accesses to an entire alloca with an integer
load or store as well as accesses to small pieces of the alloca, SROA
splits up the large integer accesses. In order to do that, it uses bit
math to merge the small accesses into large integers. While this is
effective, it produces insane IR that can cause significant problems in
the rest of the optimizer:
- It can cause load and store mismatches with GVN on the non-alloca side
where we end up loading an i64 (or some such) rather than loading
specific elements that are stored.
- We can't always get rid of the integer bit math, which is why we can't
always fix the loads and stores to work well with GVN.
- This is especially bad when we have operations that mix poorly with
integer bit math such as floating point operations.
- It will block things like the vectorizer which might be able to handle
the scalar stores that underly the aggregate.
At the same time, we can't just directly split up these loads and stores
in all cases. If there is actual integer arithmetic involved on the
values, then using integer bit math is actually the perfect lowering
because we can often combine it heavily with the surrounding math.
The solution this patch provides is to find places where SROA is
partitioning aggregates into small elements, and look for splittable
loads and stores that it can split all the way to some other adjacent
load and store. These are uniformly the cases where failing to split the
loads and stores hurts the optimizer that I have seen, and I've looked
extensively at the code produced both from more and less aggressive
approaches to this problem.
However, it is quite tricky to actually do this in SROA. We may have
loads and stores to the same alloca, or other complex patterns that are
hard to handle. This complexity leads to the somewhat subtle algorithm
implemented here. We have to do this entire process as a separate pass
over the partitioning of the alloca, and split up all of the loads prior
to splitting the stores so that we can handle safely the cases of
overlapping, including partially overlapping, loads and stores to the
same alloca. We also have to reconstitute the post-split slice
configuration so we can avoid iterating again over all the alloca uses
(the slow part of SROA). But we also have to ensure that when we split
up loads and stores to *other* allocas, we *do* re-iterate over them in
SROA to adapt to the more refined partitioning now required.
With this, I actually think we can fix a long-standing TODO in SROA
where I avoided splitting as many loads and stores as probably should be
splittable. This limitation historically mitigated the fallout of all
the bad things mentioned above. Now that we have more intelligent
handling, I plan to remove the FIXME and more aggressively mark integer
loads and stores as splittable. I'll do that in a follow-up patch to
help with bisecting any fallout.
The net result of this change should be more fine-grained and accurate
scalars being formed out of aggregates. At the very least, Clang now
generates perfect code for this high-level test case using
std::complex<float>:
#include <complex>
void g1(std::complex<float> &x, float a, float b) {
x += std::complex<float>(a, b);
}
void g2(std::complex<float> &x, float a, float b) {
x -= std::complex<float>(a, b);
}
void foo(const std::complex<float> &x, float a, float b,
std::complex<float> &x1, std::complex<float> &x2) {
std::complex<float> l1 = x;
g1(l1, a, b);
std::complex<float> l2 = x;
g2(l2, a, b);
x1 = l1;
x2 = l2;
}
This code isn't just hypothetical either. It was reduced out of the hot
inner loops of essentially every part of the Eigen math library when
using std::complex<float>. Those loops would consistently and
pervasively hop between the floating point unit and the integer unit due
to bit math extraction and insertion of floating point values that were
"stored" in a 64-bit integer register around the loop backedge.
So far, this change has passed a bootstrap and I have done some other
testing and so far, no issues. That doesn't mean there won't be though,
so I'll be prepared to help with any fallout. If you performance swings
in particular, please let me know. I'm very curious what all the impact
of this change will be. Stay tuned for the follow-up to also split more
integer loads and stores.
llvm-svn: 225061
We are allowed to move the 'B' to the right hand side if we an prove
there is no signed overflow and if the comparison itself is signed.
llvm-svn: 225034
This change implements four basic optimizations:
If a relocated value isn't used, it doesn't need to be relocated.
If the value being relocated is null, relocation doesn't change that. (Technically, this might be collector specific. I don't know of one which it doesn't work for though.)
If the value being relocated is undef, the relocation is meaningless.
If the value being relocated was known nonnull, the relocated pointer also isn't null. (Since it points to the same source language object.)
I outlined other planned work in comments.
Differential Revision: http://reviews.llvm.org/D6600
llvm-svn: 224968
In LICM, we have a check for an instruction which is guaranteed to execute and thus can't introduce any new faults if moved to the preheader. To handle a function which might unconditionally throw when first called, we check for any potentially throwing call in the loop and give up.
This is unfortunate when the potentially throwing condition is down a rare path. It prevents essentially all LICM of potentially faulting instructions where the faulting condition is checked outside the loop. It also greatly diminishes the utility of loop unswitching since control dependent instructions - which are now likely in the loops header block - will not be lifted by subsequent LICM runs.
define void @nothrow_header(i64 %x, i64 %y, i1 %cond) {
; CHECK-LABEL: nothrow_header
; CHECK-LABEL: entry
; CHECK: %div = udiv i64 %x, %y
; CHECK-LABEL: loop
; CHECK: call void @use(i64 %div)
entry:
br label %loop
loop: ; preds = %entry, %for.inc
%div = udiv i64 %x, %y
br i1 %cond, label %loop-if, label %exit
loop-if:
call void @use(i64 %div)
br label %loop
exit:
ret void
}
The current patch really only helps with non-memory instructions (i.e. divs, etc..) since the maythrow call down the rare path will be considered to alias an otherwise hoistable load. The one exception is that it does kick in for loads which are known to be invariant without regard to other possible stores, i.e. those marked with either !invarant.load metadata of tbaa 'is constant memory' metadata.
Differential Revision: http://reviews.llvm.org/D6725
llvm-svn: 224965
This patches fixes a miscompile where we were assuming that loading from null is undefined and thus we could assume it doesn't happen. This transform is perfectly legal in address space 0, but is not neccessarily legal in other address spaces.
We really should introduce a hook to control this property on a per target per address space basis. We may be loosing valuable optimizations in some address spaces by being too conservative.
Original patch by Thomas P Raoux (submitted to llvm-commits), tests and formatting fixes by me.
llvm-svn: 224961
GlobalAlias handling used to be after GlobalValue handling, which meant it was, in practice, dead code. r220165 moved GlobalAlias handling to be before GlobalValue handling, but also moved it to be before the max depth check, causing an assert due to a recursion depth limit violation.
This moves GlobalAlias handling forward to where it's safe, and changes the GlobalValue handling to only look at GlobalObjects.
Differential Revision: http://reviews.llvm.org/D6758
llvm-svn: 224765
- Fix the case where more than 1 common instructions derived from the same
operand cannot be sunk. When a pair of value has more than 1 derived values
in both branches, only 1 derived value could be sunk.
- Replace BB1 -> (BB2, PN) map with joint value map, i.e.
map of (BB1, BB2) -> PN, which is more accurate to track common ops.
llvm-svn: 224757
Take two disjoint Loops L1 and L2.
LoopSimplify fails to simplify some loops (e.g. when indirect branches
are involved). In such situations, it can happen that an exit for L1 is
the header of L2. Thus, when we create PHIs in one of such exits we are
also inserting PHIs in L2 header.
This could break LCSSA form for L2 because these inserted PHIs can also
have uses in L2 exits, which are never handled in the current
implementation. Provide a fix for this corner case and test that we
don't assert/crash on that.
Differential Revision: http://reviews.llvm.org/D6624
rdar://problem/19166231
llvm-svn: 224740
(X & INT_MIN) ? X & INT_MAX : X into X & INT_MAX
(X & INT_MIN) ? X : X & INT_MAX into X
(X & INT_MIN) ? X | INT_MIN : X into X
(X & INT_MIN) ? X : X | INT_MIN into X | INT_MIN
llvm-svn: 224669
The visitSwitchInst generates SUB constant expressions to recompute the
switch condition. When truncating the condition to a smaller type, SUB
expressions should use the previous type (before trunc) for both
operands. Also, fix code to also return the modified switch when only
the truncation is performed.
This fixes an assertion crash.
Differential Revision: http://reviews.llvm.org/D6644
rdar://problem/19191835
llvm-svn: 224588
Backends recognize (-0.0 - X) as the canonical form for fneg
and produce better code. Eg, ppc64 with 0.0:
lis r2, ha16(LCPI0_0)
lfs f0, lo16(LCPI0_0)(r2)
fsubs f1, f0, f1
blr
vs. -0.0:
fneg f1, f1
blr
Differential Revision: http://reviews.llvm.org/D6723
llvm-svn: 224583
Reverts commit r224574 to appease buildbots:
The visitSwitchInst generates SUB constant expressions to recompute the
switch condition. When truncating the condition to a smaller type, SUB
expressions should use the previous type (before trunc) for both
operands. This fixes an assertion crash.
llvm-svn: 224576
The visitSwitchInst generates SUB constant expressions to recompute the
switch condition. When truncating the condition to a smaller type, SUB
expressions should use the previous type (before trunc) for both
operands. This fixes an assertion crash.
Differential Revision: http://reviews.llvm.org/D6644
rdar://problem/19191835
llvm-svn: 224574
Some intrinsics, like s/uadd.with.overflow and umul.with.overflow, are already strength reduced.
This change adds other arithmetic intrinsics: s/usub.with.overflow, smul.with.overflow.
It completes the work on PR20194.
llvm-svn: 224417
We can always choose an value for undef which might cause %V to shift
out an important bit except for one case, when %V is zero.
However, shl behaves like an identity function when the right hand side
is zero.
llvm-svn: 224405
The loop vectorizer optimizes loops containing conditional memory
accesses by generating masked load and store intrinsics.
This decision is target dependent.
http://reviews.llvm.org/D6527
llvm-svn: 224334
isKnownPredicate.
The motivation for this change is to optimize away checks in loops
like this:
limit = min(t, len)
for (i = 0 to limit)
if (i >= len || i < 0) throw_array_of_of_bounds();
a[i] = ...
Differential Revision: http://reviews.llvm.org/D6635
llvm-svn: 224285
Now that `Metadata` is typeless, reflect that in the assembly. These
are the matching assembly changes for the metadata/value split in
r223802.
- Only use the `metadata` type when referencing metadata from a call
intrinsic -- i.e., only when it's used as a `Value`.
- Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
when referencing it from call intrinsics.
So, assembly like this:
define @foo(i32 %v) {
call void @llvm.foo(metadata !{i32 %v}, metadata !0)
call void @llvm.foo(metadata !{i32 7}, metadata !0)
call void @llvm.foo(metadata !1, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{metadata !3}, metadata !0)
ret void, !bar !2
}
!0 = metadata !{metadata !2}
!1 = metadata !{i32* @global}
!2 = metadata !{metadata !3}
!3 = metadata !{}
turns into this:
define @foo(i32 %v) {
call void @llvm.foo(metadata i32 %v, metadata !0)
call void @llvm.foo(metadata i32 7, metadata !0)
call void @llvm.foo(metadata i32* @global, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{!3}, metadata !0)
ret void, !bar !2
}
!0 = !{!2}
!1 = !{i32* @global}
!2 = !{!3}
!3 = !{}
I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines). I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.
This is part of PR21532.
llvm-svn: 224257
r223862 tried to also combine base-updating load/stores.
r224198 reverted it, as "it created a regression on the test-suite
on test MultiSource/Benchmarks/Ptrdist/anagram by scrambling the order
in which the words are shown."
Reapply, with a fix to ignore non-normal load/stores.
Truncstores are handled elsewhere (you can actually write a pattern for
those, whereas for postinc loads you can't, since they return two values),
but it should be possible to also combine extloads base updates, by checking
that the memory (rather than result) type is of the same size as the addend.
Original commit message:
We used to only combine intrinsics, and turn them into VLD1_UPD/VST1_UPD
when the base pointer is incremented after the load/store.
We can do the same thing for generic load/stores.
Note that we can only combine the first load/store+adds pair in
a sequence (as might be generated for a v16f32 load for instance),
because other combines turn the base pointer addition chain (each
computing the address of the next load, from the address of the last
load) into independent additions (common base pointer + this load's
offset).
Differential Revision: http://reviews.llvm.org/D6585
llvm-svn: 224203
This reverts commit r223862, as it created a regression on the test-suite
on test MultiSource/Benchmarks/Ptrdist/anagram by scrambling the order
in which the words are shown. We'll investigate the issue and re-apply
when safe.
llvm-svn: 224198
Summary:
InstCombine infinite-loops for the testcase added
It is because InstCombine is generating instructions that can be
optimized by itself. Fix by not optimizing frem if the optimized
type is the same as original type.
rdar://problem/19150820
Reviewers: majnemer
Differential Revision: http://reviews.llvm.org/D6634
llvm-svn: 224097
This patch teaches the instruction combiner how to fold a call to 'insertqi' if
the 'length field' (3rd operand) is set to zero, and if the sum between
field 'length' and 'bit index' (4th operand) is bigger than 64.
From the AMD64 Architecture Programmer's Manual:
1. If the sum of the bit index + length field is greater than 64, then the
results are undefined;
2. A value of zero in the field length is defined as a length of 64.
This patch improves the existing combining logic for intrinsic 'insertqi'
adding extra checks to address both point 1. and point 2.
Differential Revision: http://reviews.llvm.org/D6583
llvm-svn: 224054
We used to only combine intrinsics, and turn them into VLD1_UPD/VST1_UPD
when the base pointer is incremented after the load/store.
We can do the same thing for generic load/stores.
Note that we can only combine the first load/store+adds pair in
a sequence (as might be generated for a v16f32 load for instance),
because other combines turn the base pointer addition chain (each
computing the address of the next load, from the address of the last
load) into independent additions (common base pointer + this load's
offset).
Differential Revision: http://reviews.llvm.org/D6585
llvm-svn: 223862
patterns.
This is causing Clang to miscompile itself for 32-bit x86 somehow, and likely
also on ARM and PPC. I really don't know how, but reverting now that I've
confirmed this is actually the culprit. I have a reproduction as well and so
should be able to restore this shortly.
This reverts commit r223764.
Original commit log follows:
Teach instcombine to canonicalize "element extraction" from a load of an
integer and "element insertion" into a store of an integer into actual
element extraction, element insertion, and vector loads and stores.
Previously various parts of LLVM (including instcombine itself) would
introduce integer loads and stores into the code as a way of opaquely
loading and storing "bits". In some cases (such as a memcpy of
std::complex<float> object) we will eventually end up using those bits
in non-integer types. In order for SROA to effectively promote the
allocas involved, it splits these "store a bag of bits" integer loads
and stores up into the constituent parts. However, for non-alloca loads
and tsores which remain, it uses integer math to recombine the values
into a large integer to load or store.
All of this would be "fine", except that it forces LLVM to go through
integer math to combine and split up values. While this makes perfect
sense for integers (and in fact is critical for bitfields to end up
lowering efficiently) it is *terrible* for non-integer types, especially
floating point types. We have a much more canonical way of representing
the act of concatenating the bits of two SSA values in LLVM: a vector
and insertelement. This patch teaching InstCombine to use this
representation.
With this patch applied, LLVM will no longer introduce integer math into
the critical path of every loop over std::complex<float> operations such
as those that make up the hot path of ... oh, most HPC code, Eigen, and
any other heavy linear algebra library.
For the record, I looked *extensively* at fixing this in other parts of
the compiler, but it just doesn't work:
- We really do want to canonicalize memcpy and other bit-motion to
integer loads and stores. SSA values are tremendously more powerful
than "copy" intrinsics. Not doing this regresses massive amounts of
LLVM's scalar optimizer.
- We really do need to split up integer loads and stores of this form in
SROA or every memcpy of a trivially copyable struct will prevent SSA
formation of the members of that struct. It essentially turns off
SROA.
- The closest alternative is to actually split the loads and stores when
partitioning with SROA, but this has all of the downsides historically
discussed of splitting up loads and stores -- the wide-store
information is fundamentally lost. We would also see performance
regressions for bitfield-heavy code and other places where the
integers aren't really intended to be split without seemingly
arbitrary logic to treat integers totally differently.
- We *can* effectively fix this in instcombine, so it isn't that hard of
a choice to make IMO.
llvm-svn: 223813
Split `Metadata` away from the `Value` class hierarchy, as part of
PR21532. Assembly and bitcode changes are in the wings, but this is the
bulk of the change for the IR C++ API.
I have a follow-up patch prepared for `clang`. If this breaks other
sub-projects, I apologize in advance :(. Help me compile it on Darwin
I'll try to fix it. FWIW, the errors should be easy to fix, so it may
be simpler to just fix it yourself.
This breaks the build for all metadata-related code that's out-of-tree.
Rest assured the transition is mechanical and the compiler should catch
almost all of the problems.
Here's a quick guide for updating your code:
- `Metadata` is the root of a class hierarchy with three main classes:
`MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from
the `Value` class hierarchy. It is typeless -- i.e., instances do
*not* have a `Type`.
- `MDNode`'s operands are all `Metadata *` (instead of `Value *`).
- `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be
replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively.
If you're referring solely to resolved `MDNode`s -- post graph
construction -- just use `MDNode*`.
- `MDNode` (and the rest of `Metadata`) have only limited support for
`replaceAllUsesWith()`.
As long as an `MDNode` is pointing at a forward declaration -- the
result of `MDNode::getTemporary()` -- it maintains a side map of its
uses and can RAUW itself. Once the forward declarations are fully
resolved RAUW support is dropped on the ground. This means that
uniquing collisions on changing operands cause nodes to become
"distinct". (This already happened fairly commonly, whenever an
operand went to null.)
If you're constructing complex (non self-reference) `MDNode` cycles,
you need to call `MDNode::resolveCycles()` on each node (or on a
top-level node that somehow references all of the nodes). Also,
don't do that. Metadata cycles (and the RAUW machinery needed to
construct them) are expensive.
- An `MDNode` can only refer to a `Constant` through a bridge called
`ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`).
As a side effect, accessing an operand of an `MDNode` that is known
to be, e.g., `ConstantInt`, takes three steps: first, cast from
`Metadata` to `ConstantAsMetadata`; second, extract the `Constant`;
third, cast down to `ConstantInt`.
The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have
metadata schema owners transition away from using `Constant`s when
the type isn't important (and they don't care about referring to
`GlobalValue`s).
In the meantime, I've added transitional API to the `mdconst`
namespace that matches semantics with the old code, in order to
avoid adding the error-prone three-step equivalent to every call
site. If your old code was:
MDNode *N = foo();
bar(isa <ConstantInt>(N->getOperand(0)));
baz(cast <ConstantInt>(N->getOperand(1)));
bak(cast_or_null <ConstantInt>(N->getOperand(2)));
bat(dyn_cast <ConstantInt>(N->getOperand(3)));
bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4)));
you can trivially match its semantics with:
MDNode *N = foo();
bar(mdconst::hasa <ConstantInt>(N->getOperand(0)));
baz(mdconst::extract <ConstantInt>(N->getOperand(1)));
bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2)));
bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3)));
bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4)));
and when you transition your metadata schema to `MDInt`:
MDNode *N = foo();
bar(isa <MDInt>(N->getOperand(0)));
baz(cast <MDInt>(N->getOperand(1)));
bak(cast_or_null <MDInt>(N->getOperand(2)));
bat(dyn_cast <MDInt>(N->getOperand(3)));
bay(dyn_cast_or_null<MDInt>(N->getOperand(4)));
- A `CallInst` -- specifically, intrinsic instructions -- can refer to
metadata through a bridge called `MetadataAsValue`. This is a
subclass of `Value` where `getType()->isMetadataTy()`.
`MetadataAsValue` is the *only* class that can legally refer to a
`LocalAsMetadata`, which is a bridged form of non-`Constant` values
like `Argument` and `Instruction`. It can also refer to any other
`Metadata` subclass.
(I'll break all your testcases in a follow-up commit, when I propagate
this change to assembly.)
llvm-svn: 223802
Removed some duplicate test cases from the file /test/Transforms/InstCombine/shift.ll.
test54 and test57 were duplicates of each other.
test55 and test58 were duplicates of each other.
(Removed test57 and test58)
llvm-svn: 223767
integer and "element insertion" into a store of an integer into actual
element extraction, element insertion, and vector loads and stores.
Previously various parts of LLVM (including instcombine itself) would
introduce integer loads and stores into the code as a way of opaquely
loading and storing "bits". In some cases (such as a memcpy of
std::complex<float> object) we will eventually end up using those bits
in non-integer types. In order for SROA to effectively promote the
allocas involved, it splits these "store a bag of bits" integer loads
and stores up into the constituent parts. However, for non-alloca loads
and tsores which remain, it uses integer math to recombine the values
into a large integer to load or store.
All of this would be "fine", except that it forces LLVM to go through
integer math to combine and split up values. While this makes perfect
sense for integers (and in fact is critical for bitfields to end up
lowering efficiently) it is *terrible* for non-integer types, especially
floating point types. We have a much more canonical way of representing
the act of concatenating the bits of two SSA values in LLVM: a vector
and insertelement. This patch teaching InstCombine to use this
representation.
With this patch applied, LLVM will no longer introduce integer math into
the critical path of every loop over std::complex<float> operations such
as those that make up the hot path of ... oh, most HPC code, Eigen, and
any other heavy linear algebra library.
For the record, I looked *extensively* at fixing this in other parts of
the compiler, but it just doesn't work:
- We really do want to canonicalize memcpy and other bit-motion to
integer loads and stores. SSA values are tremendously more powerful
than "copy" intrinsics. Not doing this regresses massive amounts of
LLVM's scalar optimizer.
- We really do need to split up integer loads and stores of this form in
SROA or every memcpy of a trivially copyable struct will prevent SSA
formation of the members of that struct. It essentially turns off
SROA.
- The closest alternative is to actually split the loads and stores when
partitioning with SROA, but this has all of the downsides historically
discussed of splitting up loads and stores -- the wide-store
information is fundamentally lost. We would also see performance
regressions for bitfield-heavy code and other places where the
integers aren't really intended to be split without seemingly
arbitrary logic to treat integers totally differently.
- We *can* effectively fix this in instcombine, so it isn't that hard of
a choice to make IMO.
Differential Revision: http://reviews.llvm.org/D6548
llvm-svn: 223764
Disallow complex types of function-local metadata. The only valid
function-local metadata is an `MDNode` whose sole argument is a
non-metadata function-local value.
Part of PR21532.
llvm-svn: 223564
Reapply r223347, with a fix to not crash on uninserted instructions (or more
precisely, instructions in uninserted blocks). bugpoint was able to reduce the
test case somewhat, but it is still somewhat large (and relies on setting
things up to be simplified during inlining), so I've not included it here.
Nevertheless, it is clear what is going on and why.
Original commit message:
Restrict somewhat the memory-allocation pointer cmp opt from r223093
Based on review comments from Richard Smith, restrict this optimization from
applying to globals that might resolve lazily to other dynamically-loaded
modules, and also from dynamic allocas (which might be transformed into malloc
calls). In short, take extra care that the compared-to pointer is really
simultaneously live with the memory allocation.
llvm-svn: 223371
Added instcombine optimizations for BSWAP with AND/OR/XOR ops:
OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )
Since its just a one liner, I've also added BSWAP to the DAGCombiner equivalent as well:
fold (OP (bswap x), (bswap y)) -> (bswap (OP x, y))
Refactored bswap-fold tests to use FileCheck instead of just checking that the bswaps had gone.
Differential Revision: http://reviews.llvm.org/D6407
llvm-svn: 223349
Based on review comments from Richard Smith, restrict this optimization from
applying to globals that might resolve lazily to other dynamically-loaded
modules, and also from dynamic allocas (which might be transformed into malloc
calls). In short, take extra care that the compared-to pointer is really
simultaneously live with the memory allocation.
llvm-svn: 223347
This allows cases like float x; fmin(1.0, x); to be optimized to fminf(1.0f, x);
rdar://19049359
Differential Revision: http://reviews.llvm.org/D6496
llvm-svn: 223270
Try to convert two compares of a signed range check into a single unsigned compare.
Examples:
(icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
(icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
llvm-svn: 223224
We were assuming that each back-edge in a region represented a unique
loop, which is not always the case. We need to use LoopInfo to
correctly determine which back-edges are loops.
llvm-svn: 223199
Such loops shouldn't be vectorized due to the loops form.
After applying loop-rotate (+simplifycfg) the tests again start to check
what they are intended to check.
llvm-svn: 223170
Follow up from r222926. Also handle multiple destinations from merged
cases on multiple and subsequent phi instructions.
rdar://problem/19106978
llvm-svn: 223135
Load instructions are inserted into loop preheaders when sinking stores
and later removed if not used by the SSA updater. Avoid sinking if the
loop has no preheader and avoid crashes. This fixes one more side effect
of not handling indirectbr instructions properly on LoopSimplify.
llvm-svn: 223119
System memory allocation functions, which are identified at the IR level by the
noalias attribute on the return value, must return a pointer into a memory region
disjoint from any other memory accessible to the caller. We can use this
property to simplify pointer comparisons between allocated memory and local
stack addresses and the addresses of global variables. Neither the stack nor
global variables can overlap with the region used by the memory allocator.
Fixes PR21556.
llvm-svn: 223093
An unreachable default destination can be exploited by other optimizations, and
SDag lowering is now prepared to handle them efficiently.
For example, branches to the unreachable destination will be optimized away,
such as in the case of range checks for switch lookup tables.
On 64-bit Linux, this reduces the size of a clang bootstrap by 80 kB (and
Chromium by 30 kB).
llvm-svn: 223050
This reverts commit r222632 (and follow-up r222636), which caused a host
of LNT failures on an internal bot. I'll respond to the commit on the
list with a reproduction of one of the failures.
Conflicts:
lib/Target/X86/X86TargetTransformInfo.cpp
llvm-svn: 222936
We may be in a situation where the icmps might not be near each other in
a tree of or instructions. Try to dig out related compare instructions
and see if they combine.
N.B. This won't fire on deep trees of compares because rewritting the
tree might end up creating a net increase of IR. We may have to resort
to something more sophisticated if this is a real problem.
llvm-svn: 222928
Loop simplify skips exit-block insertion when exits contain indirectbr
instructions. This leads to an assertion in LICM when trying to sink
stores out of non-dedicated loop exits containing indirectbr
instructions. This patch fix this issue by re-checking for dedicated
exits in LICM prior to store sink attempts.
Differential Revision: http://reviews.llvm.org/D6414
rdar://problem/18943047
llvm-svn: 222927
Switch cases statements with sequential values that branch to the same
destination BB may often be handled together in a single new source BB.
In this scenario we need to remove remaining incoming values from PHI
instructions in the destination BB, as to match the number of source
branches.
Differential Revision: http://reviews.llvm.org/D6415
rdar://problem/19040894
llvm-svn: 222926
Fixed missing dominance check.
Original commit message:
This optimization tries to reuse the generated compare instruction, if there is a comparison against the default value after the switch.
Example:
if (idx < tablesize)
r = table[idx]; // table does not contain default_value
else
r = default_value;
if (r != default_value)
...
Is optimized to:
cond = idx < tablesize;
if (cond)
r = table[idx];
else
r = default_value;
if (cond)
...
Jump threading will then eliminate the second if(cond).
llvm-svn: 222891
This optimization tries to reuse the generated compare instruction, if there is a comparison against the default value after the switch.
Example:
if (idx < tablesize)
r = table[idx]; // table does not contain default_value
else
r = default_value;
if (r != default_value)
...
Is optimized to:
cond = idx < tablesize;
if (cond)
r = table[idx];
else
r = default_value;
if (cond)
...
\endcode
Jump threading will then eliminate the second if(cond).
llvm-svn: 222872
This restores our ability to optimize:
(X & C) ? X & ~C : X into X & ~C
(X & C) ? X : X & ~C into X
(X & C) ? X | C : X into X
(X & C) ? X : X | C into X | C
llvm-svn: 222868
This reverts commit r210006, it miscompiled libapr which is used in who
knows how many projects.
A test has been added to ensure that we don't regress again.
I'll work on a rewrite of what the optimization was trying to do later.
llvm-svn: 222856
If solveBlockValue() needs results from predecessors that are not already
computed, it returns false with the intention of resuming when the dependencies
have been resolved. However, the computation would never be resumed since an
'overdefined' result had been placed in the cache, preventing any further
computation.
The point of placing the 'overdefined' result in the cache seems to have been
to break cycles, but we can check for that when inserting work items in the
BlockValue stack instead. This makes the "stop and resume" mechanism of
solveBlockValue() work as intended, unlocking more analysis.
Using this patch shaves 120 KB off a 64-bit Chromium build on Linux.
I benchmarked compiling bzip2.c at -O2 but couldn't measure any difference in
compile time.
Tests by Jiangning Liu from r215343 / PR21238, Pete Cooper, and me.
Differential Revision: http://reviews.llvm.org/D6397
llvm-svn: 222768
stored rather than the pointer type.
This change is analogous to r220138 which changed the canonicalization
for loads. The rationale is the same: memory does not have a type,
operations (and thus the values they produce) have a type. We should
match that type as closely as possible rather than reading some form of
semantics into the pointer type.
With this change, loads and stores should no longer be made with
nonsensical types for the values that tehy load and store. This is
particularly important when trying to match specific loaded and stored
types in the process of doing other instcombines, which is what led me
down this twisty maze of miscanonicalization.
I've put quite some effort into looking through IR to find places where
LLVM's optimizer was being unreasonably conservative in the face of
mismatched load and store types, however it is possible (let's say,
likely!) I have missed some. If you see regressions here, or from
r220138, the likely cause is some part of LLVM failing to cope with load
and store types differing. Test cases appreciated, it is important that
we root all of these out of LLVM.
llvm-svn: 222748
clearly only exactly equal width ptrtoint and inttoptr casts are no-op
casts, it says so right there in the langref. Make the code agree.
Original log from r220277:
Teach the load analysis to allow finding available values which require
inttoptr or ptrtoint cast provided there is datalayout available.
Eventually, the datalayout can just be required but in practice it will
always be there today.
To go with the ability to expose available values requiring a ptrtoint
or inttoptr cast, helpers are added to perform one of these three casts.
These smarts are necessary to finish canonicalizing loads and stores to
the operational type requirements without regressing fundamental
combines.
I've added some test cases. These should actually improve as the load
combining and store combining improves, but they may fundamentally be
highlighting some missing combines for select in addition to exercising
the specific added logic to load analysis.
llvm-svn: 222739
This handles cases where we are comparing a masked value against itself.
The analysis could be further improved by making it recursive but such
expense is not currently justified.
llvm-svn: 222716