Summary:
The iteration order within a member of DepCands is deterministic
and therefore we don't have to sort the accesses within a member.
We also don't have to copy the indices of the pointers into a
vector, since we can iterate over the members of the class.
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11145
llvm-svn: 242033
In this patch I have only encoding. Intrinsics and DAG lowering will be in the next patch.
I temporary removed the old intrinsics test (just to split this patch).
Half types are not covered here.
Differential Revision: http://reviews.llvm.org/D11134
llvm-svn: 242023
Summary:
This at least saves compile time. I also encountered a case where
ephemeral values affect whether other variables are promoted, causing
performance issues. It may be a bug in LSR, but I didn't manage to
reduce it yet. Anyhow, I believe it's in general not worth considering
ephemeral values in LSR.
Reviewers: atrick, hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11115
llvm-svn: 242011
Register r12 ('ip') is used by GCC for this purpose
and hence is used here. As discussed on the GCC mailing
list, the register choice is an ABI issue and so
choosing the same register as GCC means
__builtin_call_with_static_chain is compatible.
A similar patch has just gone in the AArch64 backend,
so this is just the ARM counterpart, following the same
discussion.
Patch by Stephen Cross.
llvm-svn: 241996
While the v4i32 shl operation is already vectorized using a cvttps2dq/pmulld pattern, the lshr/ashr opeations are still scalarized.
This patch adds vectorization support for non-uniform v4i32 shift operations - it splats constant shift amounts to allow them to use the immediate sse shift instructions, or extracts/zero-extends non-constant shift amounts. The individual results are then blended together.
Differential Revision: http://reviews.llvm.org/D11063
llvm-svn: 241989
There is no suitable basic block to sink instructions in loops without
exits. The only way an instruction in a loop without exits can be used
is as an incoming value to a PHI. In such cases, the incoming block for
the corresponding value is unreachable.
This fixes PR24013.
Differential Revision: http://reviews.llvm.org/D10903
llvm-svn: 241987
r238842 added the TargetRecip system for controlling use of reciprocal
estimates for sqrt and division using a set of parameters that can be set by
the frontend. Clang now supports a sophisticated -mrecip option, and this will
allow that option to effectively control the relevant code-generation
functionality of the PPC backend.
llvm-svn: 241985
This adds support for the 'nest' attribute, which allows the static chain
register to be set for functions calls under non-Darwin PPC/PPC64 targets. r11
is the chain register (which the PPC64 ELF ABI calls the "environment
pointer"). For indirect calls under PPC64 ELFv1, this would normally be loaded
from the function descriptor, but providing an explicit 'nest' parameter will
override that process and use the value provided.
This allows __builtin_call_with_static_chain to work as expected on PowerPC.
llvm-svn: 241984
r236894 caused PR23626 (Clang miscompiles webkit's base64 decoder), and was
reverted in r237984. This reapplies the patch with an additional test case for
PR23626 and the associated fix (both scales and offsets in the
BasicAliasAnalysis::constantOffsetHeuristic should initially be zero).
Patch by Nick White, thanks!
llvm-svn: 241981
The following functions are moved from the LoopVectorizer to VectorUtils:
- getGEPInductionOperand
- stripGetElementPtr
- getUniqueCastUse
- getStrideFromPointer
These used to be static functions in LoopVectorize, but will also be used by
the upcoming loop versioning LICM transformation.
Patch by Ashutosh Nema!
llvm-svn: 241980
This change adds new attribute called "argmemonly". Function marked with this attribute can only access memory through it's argument pointers. This attribute directly corresponds to the "OnlyAccessesArgumentPointees" ModRef behaviour in alias analysis.
Differential Revision: http://reviews.llvm.org/D10398
llvm-svn: 241979
No in-tree alias analysis used this facility, and it was not called in
any particularly rigorous way, so it seems unlikely to be correct.
Note that one of the only stateful AA implementations in-tree,
GlobalsModRef is completely broken currently (and any AA passes like it
are equally broken) because Module AA passes are not effectively
invalidated when a function pass that fails to update the AA stack runs.
Ultimately, it doesn't seem like we know how we want to build stateful
AA, and until then trying to support and maintain correctness for an
untested API is essentially impossible. To that end, I'm planning to rip
out all of the update API. It can return if and when we need it and know
how to build it on top of the new pass manager and as part of *tested*
stateful AA implementations in the tree.
Differential Revision: http://reviews.llvm.org/D10889
llvm-svn: 241975
Disallow all mutation of `MCSubtargetInfo` expect the feature bits.
Besides deleting the assignment operators -- which were dead "code" --
this restricts `InitMCProcessorInfo()` to subclass initialization
sequences, and exposes a new more limited function called
`setDefaultFeatures()` for use by the ARMAsmParser `.cpu` directive.
There's a small functional change here: ARMAsmParser used to adjust
`MCSubtargetInfo::CPUSchedModel` as a side effect of calling
`InitMCProcessorInfo()`, but I've removed that suspicious behaviour.
Since the AsmParser shouldn't be doing any scheduling, there shouldn't
be any observable change...
llvm-svn: 241961
Most loads and stores are derived from pointers derived from
a kernel argument load inserted during argument lowering.
This was just using the EntryToken chain for the argument loads,
and any users of these loads were also on the EntryToken chain.
Return the chain of the lowered argument load so that dependent loads
end up on the correct chain.
No test since I'm not aware of any case where this actually
broke.
llvm-svn: 241960
Force all creators of `MCSubtargetInfo` to immediately initialize it,
merging the default constructor and the initializer into an initializing
constructor. Besides cleaning up the code a little, this makes it clear
that the initializer is never called again later.
Out-of-tree backends need a trivial change: instead of calling:
auto *X = new MCSubtargetInfo();
InitXYZMCSubtargetInfo(X, ...);
return X;
they should call:
return createXYZMCSubtargetInfoImpl(...);
There's no real functionality change here.
llvm-svn: 241957
Remove all calls to `MCSubtargetInfo::InitCPUSched()` and merge its body
into the only relevant caller, `MCSubtargetInfo::InitMCProcessorInfo()`.
We were only calling the former after explicitly calling the latter with
the same CPU; it's confusing to have both methods exposed.
Besides a minor (surely unmeasurable) speedup in ARM and X86 from
avoiding running the logic twice, no functionality change.
llvm-svn: 241956
This in turn would sometimes introduce new cleanupblocks that didn't
previously exist. The uses were being introduced by SSA value demotion.
We actually want to *promote* uses of EH pointers and selectors, so I
added some spcecial casing to avoid demoting such instructions. This is
getting overly complicated, but hopefully we'll come along and delete it
in the new representation.
llvm-svn: 241950
The motivation is to allow GatherAllAliases / FindBetterChain
to not give up on dependent loads of a pointer from constant memory.
This is important for AMDGPU, because most loads are pointers
derived from a load of a kernel argument from constant memory.
llvm-svn: 241948
`MCSchedModel` is large. Make `MCSchedModel::GetDefaultSchedModel()`
return by-reference instead of by-value, so we can store a pointer in
`MCSubtargetInfo::CPUSchedModel` instead of a copy.
Note: since `MCSchedModel` is POD, this doesn't create a static
constructor.
llvm-svn: 241947
Fixes PR23804: assertion failure in emitPrologue in the case of a
function with an empty frame and a dynamic alloca that needs stack
realignment. This is a typical case for AddressSanitizer.
llvm-svn: 241943
Summary:
Following the discussion on r241884, it's more reasonable to assume that a
target has no vector registers by default instead of letting every such
target overrides getNumberOfRegisters.
Therefore, this patch modifies BasicTTIImpl::getNumberOfRegisters to
return 0 when Vector is true, and partially reverts r241884 which
modifies NVPTXTTIImpl::getNumberOfRegisters.
It also fixes a performance bug in LoopVectorizer. Even if a target has
no vector registers, vectorization may still help ILP. So, we need both
checks to be false before disabling loop vectorization all together.
Reviewers: hfinkel
Subscribers: llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11108
llvm-svn: 241942
Summary:
The class will obviously need improvement down the road. For one, there
is no reason that addPHINodes would have to be exposed like that. I
will make this and other improvements in follow-up patches.
The main goal is to be able to share this functionality. The
LoopLoadElimination pass I am working on needs it too. Later we can
move other clients as well (LV and Ashutosh's LICMVer).
Reviewers: hfinkel, ashutosh.nema
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10577
llvm-svn: 241932
Summary:
This makes them available to the LoopVersioning class as that is moved
to its own module in the next patch.
Reviewers: ashutosh.nema, hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10576
llvm-svn: 241931
This commit factors out common code from MergeBaseUpdateLoadStore() and
MergeBaseUpdateLSMultiple() and introduces a new function
MergeBaseUpdateLSDouble() which merges adds/subs preceding/following a
strd/ldrd instruction into an strd/ldrd instruction with writeback where
possible.
Differential Revision: http://reviews.llvm.org/D10676
llvm-svn: 241928
If our two inputs have known top-zero bit counts M and N, we trivially
know that the output cannot have any bits set in the top (min(M, N)-1)
bits, since nothing could carry past that point.
llvm-svn: 241927
Summary:
This code is based on AArch64 for modern backend good practice, and NVPTX for
virtual ISA concerns.
Reviewers: sunfish
Subscribers: aemerson, llvm-commits, jfb
Differential Revision: http://reviews.llvm.org/D11070
llvm-svn: 241923
This commit implements the initial serialization of stack objects from the
MachineFrameInfo class. It can only serialize the ordinary stack objects
(including ordinary spill slots), but it doesn't serialize variable sized or
fixed stack objects yet.
The stack objects are serialized using a YAML sequence of YAML inline mappings.
Each mapping has the object's ID, type, size, offset and alignment. The stack
objects are a part of machine function's YAML mapping.
Reviewers: Duncan P. N. Exon Smith
llvm-svn: 241922
Summary:
The target frame lowering's concrete type is always known in RegisterInfo, yet it's only sometimes devirtualized through a static_cast. This change adds an auto-generated static function <Target>GenRegisterInfo::getFrameLowering(const MachineFunction &MF) which does this devirtualization, and uses this function in all targets which can.
This change was suggested by sunfish in D11070 for WebAssembly, I figure that I may as well improve the other targets while I'm here.
Subscribers: sunfish, ted, llvm-commits, jfb
Differential Revision: http://reviews.llvm.org/D11093
llvm-svn: 241921
This improves the logic in several ways and is a preparation for
followup patches:
- First perform an analysis and create a list of merge candidates, then
transform. This simplifies the code in that you have don't have to
care to much anymore that you may be holding iterators to
MachineInstrs that get removed.
- Analyze/Transform basic blocks in reverse order. This allows to use
LivePhysRegs to find free registers instead of the RegisterScavenger.
The RegisterScavenger will become less precise in the future as it
relies on the deprecated kill-flags.
- Return the newly created node in MergeOps so there's no need to look
around in the schedule to find it.
- Rename some MBBI iterators to InsertBefore to make their role clear.
- General code cleanup.
Differential Revision: http://reviews.llvm.org/D10140
llvm-svn: 241920
FCmp behaves a lot like a floating-point binary operator in many ways,
and can benefit from fast-math information. Flags such as nsz and nnan
can affect if this fcmp (in combination with a select) can be treated
as a fminnum/fmaxnum operation.
This adds backwards-compatible bitcode support, IR parsing and writing,
LangRef changes and IRBuilder changes. I'll need to audit InstSimplify
and InstCombine in a followup to find places where flags should be
copied.
llvm-svn: 241901
After changes in rL231820 loop re-rotation is performed even in -Oz mode. Since loop rotation is disabled for -Oz, it seems loop re-rotation should be disabled too.
Differential Revision: http://reviews.llvm.org/D10961
llvm-svn: 241897
Summary:
This introduces new instructions neccessary to implement MSVC-compatible
exception handling support. Most of the middle-end and none of the
back-end haven't been audited or updated to take them into account.
Reviewers: rnk, JosephTremoulet, reames, nlewycky, rjmccall
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11041
llvm-svn: 241888
Not doing this can lead to misoptimizations down the line, e.g. because
of range metadata on the replacing load excluding values that are valid
for the load that is being replaced.
llvm-svn: 241886
Summary:
Without this patch, LoopVectorizer in certain cases (see loop-vectorize.ll)
produces code with complex control flow which hurts later optimizations. Since
NVPTX doesn't have vector registers in LLVM's sense
(NVPTXTTI::getRegisterBitWidth(true) == 32), we for now declare no vector
registers to effectively disable loop vectorization.
Reviewers: jholewinski
Subscribers: jingyue, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11089
llvm-svn: 241884
Apparently this is important, otherwise _except_handler3 assumes that
the registration node is corrupted and ignores it.
Also fix a bug in WinEHPrepare where we would insert code after a
terminator instruction.
llvm-svn: 241877
The virtual registers are serialized using a YAML sequence of YAML inline
mappings. Each mapping has the id of the virtual register and the register
class.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10981
llvm-svn: 241868
Currently canCheckPtrAtRT returns two flags NeedRTCheck and CanDoRT.
NeedRTCheck says whether we need checks and CanDoRT whether we can
generate the checks. The idea is to encode three states with these:
Need/Can:
(1) false/dont-care: no checks are needed
(2) true/false: we need checks but can't generate them
(3) true/true: we need checks and we can generate them
This is pretty unnecessary since the caller (analyzeLoop) is only
interested in whether we can generate the checks if we actually need
them (i.e. 1 or 3).
So this change cleans up to return just that (CanDoRTIfNeeded) and pulls
all the underlying logic into canCheckPtrAtRT.
By doing all this, we simplify analyzeLoop which is the complex function
in LAA.
There is further room for improvement here by using RtCheck.Need
directly rather than a new local variable NeedRTCheck but that's for a
later patch.
llvm-svn: 241866
The runtime does not restore CSRs when transferring control back to the
function handling the exception. According to the experts on IRC, LLVM's
register allocator has no way to model register clobbers that only
happen on one edge of the CFG. For now, don't worry about trying to use
the meager three CSRs available on 32-bit X86 and just say that such
invokes preserve nothing.
llvm-svn: 241865
This commit adds a new error which is reported when the MIR Parser encounters
a machine function without any machine basic blocks. The machine verifier
expects that the machine functions have at least one MBB, and this error will
prevent machine functions without MBBs from reaching the machine verifier and
crashing with an assertion.
llvm-svn: 241862
Summary:
Before this change ImplicitNullChecks would only pick loads of the form:
```
test Reg, Reg
jz elsewhere
fallthrough:
movl 32(Reg), Reg2
```
but not (say)
```
test Reg, Reg
jz elsewhere
fallthrough:
inc Reg3
movl 32(Reg), Reg2
```
This change teaches ImplicitNullChecks to look through "unrelated"
instructions like `inc Reg3` when searching for a load instruction
to convert to a trapping load.
Reviewers: atrick, JosephTremoulet, reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11044
llvm-svn: 241850
This commit serializes the 13 scalar boolean and integer attributes from the
MachineFrameInfo class: IsFrameAddressTaken, IsReturnAddressTaken, HasStackMap,
HasPatchPoint, StackSize, OffsetAdjustment, MaxAlignment, AdjustsStack,
HasCalls, MaxCallFrameSize, HasOpaqueSPAdjustment, HasVAStart, and
HasMustTailInVarArgFunc. These attributes are serialized as part
of the frameInfo YAML mapping, which itself is a part of the machine function's
YAML mapping.
llvm-svn: 241844
It looks like ld64 requires it. With this we seem to be able to bootstrap using
llvm-ar+/usr/bin/true instead of ar+ranlib (currently on stage2).
llvm-svn: 241842
Summary:
In RewriteLoopExitValues, before expanding out an SCEV expression using
SCEVExpander, try to see if an existing LLVM IR expression already
computes the value we're interested in. If so use that existing
expression.
Apart from reducing IndVars' reliance on the rest of the compilation
pipeline, this also prevents IndVars from concluding some expressions as
"high cost" when they're not. For instance,
`InductiveRangeCheckElimination` often emits code of the following form:
```
len = umin(len_A, len_B)
loop:
...
if (i++ < len)
goto loop
outside_loop:
use(i)
```
`SCEVExpander` refuses to rewrite the use of `i` in `outside_loop`,
since it thinks the value of `i` on loop exit, `len`, is a high cost
expansion since it contains an `umax` in it. With this change,
`IndVars` can see that it can re-use `len` instead of creating a new
expression to compute `umin(len_A, len_B)`.
I considered putting this cleverness in `SCEVExpander`, but I was
worried that it may then have a deterimental effect on other passes
that use it. So I decided it was better to just do this in the one
place where it seems like an obviously good idea, with the intent of
generalizing later if needed.
Reviewers: atrick, reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10782
llvm-svn: 241838
This patch allows the read_register and write_register intrinsics to
read/write the RBP/EBP registers on X86 iff the targeted register is
the frame pointer for the containing function.
Differential Revision: http://reviews.llvm.org/D10977
llvm-svn: 241827
This patch fixes bugs that were exposed by the addition of fast-math-flags in the DAG:
r237046 ( http://reviews.llvm.org/rL237046 ):
1. When replacing a division node, it's not enough to RAUW.
We should call CombineTo() to delete dead nodes and combine again.
2. Because we are changing the DAG, we can't return an empty SDValue
after the transform. As the code comments say:
Visitation implementation - Implement dag node combining for different node types.
The semantics are as follows: Return Value:
SDValue.getNode() == 0 - No change was made
SDValue.getNode() == N - N was replaced, is dead and has been handled.
otherwise - N should be replaced by the returned Operand.
The new test case shows no difference with or without this patch, but it will crash if
we re-apply r237046 or enable FMF via the current -enable-fmf-dag cl::opt.
Differential Revision: http://reviews.llvm.org/D9893
llvm-svn: 241826
Summary:
The checking pointer group construction algorithm relied on the iteration on DepCands.
We would need the same leaders across runs and the same iteration order over the underlying std::set for determinism.
This changes the algorithm to process the pointers in the order in which they were added to the runtime check, which is deterministic.
We need to update the tests, since the order in which pointers appear has changed.
No new tests were added, since it is impossible to test for non-determinism.
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11064
llvm-svn: 241809
The gnu ar format uses BE numbers. The BSD one uses LE. Add a helper for one or the
other. NFC for now, just removes some noise from the following patch.
llvm-svn: 241808
Summary: If shift amount is a constant value > 64 bit it is handled incorrectly during type legalization and X86 lowering. This patch the type of shift amount argument in function DAGTypeLegalizer::ExpandShiftByConstant from unsigned to APInt.
Reviewers: nadav, majnemer, sanjoy, RKSimon
Subscribers: RKSimon, llvm-commits
Differential Revision: http://reviews.llvm.org/D10767
llvm-svn: 241806
The nest attribute is currently supported on the x86 (32-bit) and x86-64
backends, but not on ARM (32-bit) or AArch64. This patch adds support for
nest to the AArch64 backend.
Register x18 is used by GCC for this purpose and hence is used here.
As discussed on the GCC mailing list the register choice is an ABI issue
and so choosing the same register as GCC means __builtin_call_with_static_chain
is compatible.
Patch by Stephen Cross.
llvm-svn: 241794
The newly added function returns the size of the specified floating
point semantics in bits.
Differential revision: http://reviews.llvm.org/D8413
llvm-svn: 241793
Summary: If shift amount is a constant value > 64 bit it is handled incorrectly during type legalization and X86 lowering. This patch the type of shift amount argument in function DAGTypeLegalizer::ExpandShiftByConstant from unsigned to APInt.
Reviewers: nadav, majnemer, sanjoy, RKSimon
Subscribers: RKSimon, llvm-commits
Differential Revision: http://reviews.llvm.org/D10767
llvm-svn: 241790
The justification of this change is here: http://lists.cs.uiuc.edu/pipermail/llvmdev/2015-March/082989.html
According to the current GEP syntax, vector GEP requires that each index must be a vector with the same number of elements.
%A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
In this implementation I let each index be or vector or scalar. All vector indices must have the same number of elements. The scalar value will mean the splat vector value.
(1) %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
or
(2) %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
In all cases the %A type is <4 x i8*>
In the case (2) we add the same offset to all pointers.
The case (1) covers C[B[i]] case, when we have the same base C and different offsets B[i].
The documentation is updated.
http://reviews.llvm.org/D10496
llvm-svn: 241788
The original name was too close to NeedRTCheck which is what the actual
memcheck analysis returns. This flag, as the new name suggests, is only
used to whether to initiate that analysis.
Also a comment is added to answer one question I had about this code for
a long time. Namely, how does this flag differ from
isDependencyCheckNeeded since they are seemingly set at the same time.
llvm-svn: 241784
Summary:
Remove empty subclass in the process.
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren, ted
Differential Revision: http://reviews.llvm.org/D11045
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241780
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: yaron.keren, rafael, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11042
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241779
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11040
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241778
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: yaron.keren, rafael, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11038
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241777
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11037
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241776
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, ted, yaron.keren, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D11028
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241775
DataLayout is no longer optional. It was initialized with or without
a DataLayout, and the DataLayout when supplied could have been the
one from the TargetMachine.
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11021
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241774
Summary:
Avoid using the TargetMachine owned DataLayout and use the Module owned
one instead. This requires passing the DataLayout up the stack to
ComputeValueVTs().
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, yaron.keren, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D11019
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241773
Column information is present in CodeView when the line table subsection
has bit 0 set to 1 in it's flags field. The column information is
represented as a pair of 16-bit quantities: a starting and ending
column. This information is present at the end of the chunk, after all
the line-PC pairs.
llvm-svn: 241764
This commit ([LAA] Fix estimation of number of memchecks) regressed the
logic a bit. We shouldn't quit the analysis if we encounter a pointer
without known bounds *unless* we actually need to emit a memcheck for
it.
The original code was using NumComparisons which is now computed
differently. Instead I compute NeedRTCheck from NumReadPtrChecks and
NumWritePtrChecks.
As side note, I find the separation of NeedRTCheck and CanDoRT
confusing, so I will try to merge them in a follow-up patch.
llvm-svn: 241756
Place all code corresponding to a run-time check in one place.
Previously we generated some code, then proceeded to a next check, then
finished the code for the first check (like splitting blocks and
generating branches). Now the code for generating a check is
self-contained.
llvm-svn: 241741
All the usual X86 target-specific conventions are collapsed to the
normal Win64 convention, but the custom conventions like GHC and webkit
should not be.
Previously we would assume that the caller allocated 32 bytes of shadow
space for us, which is not how webkit_jscc or other custom conventions
are supposed to work.
Based on a patch by peavo@outlook.com.
Fixes PR24051.
llvm-svn: 241725
No support for the symbol table yet (but will hopefully add it today).
We always use the long filename format so that we can align the member,
which is an advantage of the BSD format.
llvm-svn: 241721
This commit changes the type of the field 'Name' in the struct
'yaml::MachineBasicBlock' from 'std::string' to 'yaml::StringValue'. This change
allows the MIR parser to report errors related to the MBB name with the proper
source locations.
llvm-svn: 241718
The inferred output file name is based on the first input file, not the
first one with extension .obj. The output file was also being written to
the wrong directory; it needs to be written to whichever directory on the
libpath it was found in. This change fixes both issues.
llvm-svn: 241710
r239285 ([LoopAccessAnalysis] Teach LAA to check the memory dependence
between strided accesses.) introduced a new case under
MemoryDepChecker::isDependent. We normally have debug output for each
case.
llvm-svn: 241707
The 32-bit lowering assumed that WinEHPrepare had this invariant.
WinEHPrepare did it for C++, but not SEH. The result was that we would
insert calls to llvm.x86.seh.restoreframe in normal basic blocks, which
corrupted the frame pointer.
llvm-svn: 241699
- Implement copying ASR to/from GPR regs.
- Mark ASRs as non-allocatable, so it won't try to arbitrarily use
them inappropriately.
- Instead of inserting explicit WRASR/RDASR nodes in the MUL/DIV
routines, just do normal register copies.
- Also...mark div as using Y, not just writing it.
Added a test case with some code which previously died with an
assertion failure (with -O0), or produced wrong code (otherwise).
(Third time's the charm?)
Differential Revision: http://reviews.llvm.org/D10401
llvm-svn: 241686
Summary:
Often filter-like loops will do memory accesses that are
separated by constant offsets. In these cases it is
common that we will exceed the threshold for the
allowable number of checks.
However, it should be possible to merge such checks,
sice a check of any interval againt two other intervals separated
by a constant offset (a,b), (a+c, b+c) will be equivalent with
a check againt (a, b+c), as long as (a,b) and (a+c, b+c) overlap.
Assuming the loop will be executed for a sufficient number of
iterations, this will be true. If not true, checking against
(a, b+c) is still safe (although not equivalent).
As long as there are no dependencies between two accesses,
we can merge their checks into a single one. We use this
technique to construct groups of accesses, and then check
the intervals associated with the groups instead of
checking the accesses directly.
Reviewers: anemet
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10386
llvm-svn: 241673
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11017
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241655
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: yaron.keren, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D11009
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241654
The incoming EBP value points to the end of a local stack allocation, so
we can use that to restore ESI, the base pointer. Once we do that, we
can use local stack allocations. If we know we need stack realignment,
spill the original frame pointer in the prologue and reload it after
restoring ESI.
llvm-svn: 241648
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11010
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241646
This commit adopts the 'ModuleSlotTracker' class, which was surfaced in r240842,
to print the global address operands. This change ensures that the slot tracker
won't have to be recreated every time a global address operand is printed,
making the MIR printing more efficient.
llvm-svn: 241645
Tim Northover has told me that they can occur when the compiler cleverly
constructs constants - as demonstrated in the test case.
rdar://21703486
llvm-svn: 241641
Summary:
Initially, these intrinsics seemed like part of a family of "frame"
related intrinsics, but now I think that's more confusing than helpful.
Initially, the LangRef specified that this would create a new kind of
allocation that would be allocated at a fixed offset from the frame
pointer (EBP/RBP). We ended up dropping that design, and leaving the
stack frame layout alone.
These intrinsics are really about sharing local stack allocations, not
frame pointers. I intend to go further and add an `llvm.localaddress()`
intrinsic that returns whatever register (EBP, ESI, ESP, RBX) is being
used to address locals, which should not be confused with the frame
pointer.
Naming suggestions at this point are welcome, I'm happy to re-run sed.
Reviewers: majnemer, nicholas
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11011
llvm-svn: 241633
Summary:
SelectionDAG itself is not invoking directly the DataLayout in the
TargetMachine, but the "TargetLowering" class is still using it. I'll
address it in a following commit.
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11000
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241618
This reverts commit r241602. We had a latent bug in SCCP where we would
make a basic block empty and then proceed to ask questions about it's
terminator.
llvm-svn: 241616
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10987
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241615
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10986
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241614
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10985
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241613
Summary:
This change is part of a series of commits dedicated to have a
single DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10984
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241610
This commit modifies the interface for the machine instruction parsing
functions by wrapping the parameter 'MBBSlots' in a new structure called
'PerFunctionMIParsingState'. This change is useful as in the future I will be
able to pass new parameters to the machine instruction parser just by modifying
the 'PerFunctionMIParsingState' structure instead of adding a new parameter to
each function.
llvm-svn: 241607
getSymbolValue now returns a value that in convenient for most callers:
* 0 for undefined
* symbol size for common symbols
* offset/address for symbols the rest
Code that needs something more specific can check getSymbolFlags.
llvm-svn: 241605
This type of prologue isn't supported yet. Implementing it should be a
matter of copying the adjusted incoming EBP into ESI (the base pointer)
instead of EBP. The original EBP can be saved and restored from other
memory afterwards.
llvm-svn: 241597
This includes code that is intended to be target-independent as well
as the Hexagon-specific details. This is just the framework without
any users.
llvm-svn: 241595
At least not in the interface exposed by ObjectFile. This matches what ELF and
COFF implement.
Adjust existing code that was expecting them to have values. No overall
functionality change intended.
Another option would be to change the interface and the ELF and COFF
implementations to say that the value of a common symbol is its size.
llvm-svn: 241593
They are implemented like that in some object formats, but for the interface
provided by lib/Object, SF_Undefined and SF_Common are different things.
This matches the ELF and COFF implementation and fixes llvm-nm for MachO.
llvm-svn: 241587
In these two contexts we really just want the raw n_value. No need to use
getSymbolValue which checks for special cases where, semantically, the symbol
has no value.
llvm-svn: 241584
getFirstNonPHI's documentation states that it returns null if there is
no non-PHI instruction. However, it instead returns a pointer to the
end iterator. The implementation of getFirstNonPHI claims that
dereferencing the iterator will result in an assertion failure but this
doesn't occur. Instead, machinery like getFirstInsertionPt will attempt
to isa<> this invalid memory which results in unpredictable behavior.
Instead, make getFirst* return null if no such instruction exists.
llvm-svn: 241570
be emitted.
This is needed to enable ARM long calls for LTO and enable and disable it on a
per-function basis.
Out-of-tree projects currently using EnableARMLongCalls to emit long calls
should start passing "+long-calls" to the feature string (see the changes made
to clang in r241565).
rdar://problem/21529937
Differential Revision: http://reviews.llvm.org/D9364
llvm-svn: 241566
This commit verifies that the parsed machine instructions contain the implicit
register operands as specified by the MCInstrDesc. Variadic and call
instructions aren't verified.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10781
llvm-svn: 241537
Calling into the base class' getAnalysisUsage method after we did our pass
specific modifications. This shouldn't really matter since this is the last
pass in the pipeline anyways.
llvm-svn: 241536
This commit serializes the implicit flag for the register machine operands. It
introduces two new keywords into the machine instruction syntax: 'implicit' and
'implicit-def'. The 'implicit' keyword is used for the implicit register
operands, and the 'implicit-def' keyword is used for the register operands that
have both the implicit and the define flags set.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10709
llvm-svn: 241519
The vperm2f128/vperm2i128 shuffle mask decoding was not attempting to deal with shuffles that give zero lanes. This patch fixes this so that the assembly printer can provide shuffle comments.
As this decoder is also used in X86ISelLowering for shuffle combining, I've added an early-out to match existing behaviour. The hope is that we can add zero support in the future, this would allow other ops' decodes (e.g. insertps) to be combined as well.
Differential Revision: http://reviews.llvm.org/D10593
llvm-svn: 241516
Extend the reassociation optimization of http://reviews.llvm.org/rL240361 (D10460)
to SSE scalar FP SP adds in addition to AVX scalar FP SP adds.
With the 'switch' in place, we can trivially add other opcodes and test cases in
future patches.
Differential Revision: http://reviews.llvm.org/D10975
llvm-svn: 241515
This patch adds vectorization support for uniform constant i64 arithmetic shift right operators.
Differential Revision: http://reviews.llvm.org/D9645
llvm-svn: 241514
The previous code put the load after the terminator, leading to invalid
IR and downstream crashes. This caused http://crbug.com/506446.
llvm-svn: 241509
This patch adds support for v8i16 and v16i8 shuffle lowering using the immediate versions of the SSE4A EXTRQ and INSERTQ instructions. Although rather limited (they can only act on the lower 64-bits of the source vectors, leave the upper 64-bits of the result vector undefined and don't have VEX encoded variants), the instructions are still useful for the zero extension of any lane (EXTRQ) or inserting a lane into another vector (INSERTQ). Testing demonstrated that it wasn't typically worth it to use these instructions for v2i64 or v4i32 vector shuffles although they are capable of it.
As well as adding specific pattern matching for the shuffles, the patch uses EXTRQ for zero extension cases where SSE41 isn't available and its more efficient than the SSE2 'unpack' default approach. It also adds shuffle decode support for the EXTRQ / INSERTQ cases when the instructions are handling full byte-sized extractions / insertions.
From this foundation, future patches will be able to make use of the instructions for situations that use their ability to extract/insert at the bit level.
Differential Revision: http://reviews.llvm.org/D10146
llvm-svn: 241508
With the completion of D9746 there is now a common implementation of integer signed/unsigned min/max nodes, removing the need for the equivalent X86 specific implementations.
This patch removes the old X86ISD nodes, legalizes the relevant SSE2/SSE41/AVX2/AVX512 instructions for the ISD versions and converts the small amount of existing X86 code.
Differential Revision: http://reviews.llvm.org/D10947
llvm-svn: 241506
This commit adds a 'run-pass' option to llc, which instructs the compiler to run
one specific code generation pass only.
Llc already has the 'start-after' and the 'stop-after' options, and this new
option complements the other two by making it easier to write tests that want
to invoke a single pass only.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10776
llvm-svn: 241476
Running this after the scheduler enables scheduling
waits later so other ALU instructions can run while
this would be waiting.
When combined with enabling the post-RA scheduler, this
gives about a ~20% improvement on sgemm.
llvm-svn: 241473
Summary:
This concludes the patch series to eliminate StringRef forms of GNU triples
from the internals of LLVM that began in r239036.
At this point, the StringRef-form of GNU Triples should only be used in the
public API (including IR serialization) and a couple objects that directly
interact with the API (most notably the Module class). The next step is to
replace these Triple objects with the TargetTuple object that will represent
our authoratative/unambiguous internal equivalent to GNU Triples.
Reviewers: rengolin
Subscribers: llvm-commits, jholewinski, ted, rengolin
Differential Revision: http://reviews.llvm.org/D10962
llvm-svn: 241472
This change includes a fix for https://code.google.com/p/chromium/issues/detail?id=499508#c3,
which required updating the visibility for symbols with eliminated definitions.
--Original Commit Message--
Add new EliminateAvailableExternally module pass, which is performed in
O2 compiles just before GlobalDCE, unless we are preparing for LTO.
This pass eliminates available externally globals (turning them into
declarations), regardless of whether they are dead/unreferenced, since
we are guaranteed to have a copy available elsewhere at link time.
This enables additional opportunities for GlobalDCE.
If we are preparing for LTO (e.g. a -flto -c compile), the pass is not
included as we want to preserve available externally functions for possible
link time inlining. The FE indicates whether we are doing an -flto compile
via the new PrepareForLTO flag on the PassManagerBuilder.
llvm-svn: 241466
We don't have a good way to detect most situations where
DS offsets are usable on SI, so add an option to force using
them even if unsafe for debugging performance problems.
llvm-svn: 241462
These are mostly from the chart in the SparcV8 spec, section "A.3
Synthetic Instructions".
Differential Revision: http://reviews.llvm.org/D9834
llvm-svn: 241461
Originally added in r139314.
Back then it didn't actually get the address, it got whatever value the
relocation used: address or offset.
The values in different object formats are:
* MachO: Always an offset.
* COFF: Always an address, but when talking about the virtual address of
sections it says: "for simplicity, compilers should set this to zero".
* ELF: An offset for .o files and and address for .so files. In the case of the
.so, the relocation in not linked to any section (sh_info is 0). We can't
really compute an offset.
Some API mappings would be:
* Use getAddress for everything. It would be quite cumbersome. To compute the
address elf has to follow sh_info, which can be corrupted and therefore the
method has to return an ErrorOr. The address of the section is also the same
for every relocation in a section, so we shouldn't have to check the error
and fetch the value for every relocation.
* Use a getValue and make it up to the user to know what it is getting.
* Use a getOffset and:
* Assert for dynamic ELF objects. That is a very peculiar case and it is
probably fair to ask any tool that wants to support it to use ELF.h. The
only tool we have that reads those (llvm-readobj) already does that. The
only other use case I can think of is a dynamic linker.
* Check that COFF .obj files have sections with zero virtual address spaces. If
it turns out that some assembler/compiler produces these, we can change
COFFObjectFile::getRelocationOffset to subtract it. Given COFF format,
this can be done without the need for ErrorOr.
The getRelocationAddress method was never implemented for COFF. It also
had exactly one use in a very peculiar case: a shortcut for adding the
section value to a pcrel reloc on MachO.
Given that, I don't expect that there is any use out there of the C API. If
that is not the case, let me know and I will add it back with the implementation
inlined and do a proper deprecation.
llvm-svn: 241450
The code in AArch64A57FPLoadBalancing::scavengeRegister() to handle dead defs
was not correctly handling aliased registers. E.g. if the dead def was of D2,
then S2 was not being marked as unavailable, so it could potentially be used
across a live-range in which it would be clobbered.
Patch by Geoff Berry <gberry@codeaurora.org>!
Phabricator: http://reviews.llvm.org/D10900
llvm-svn: 241449
When talking about the virtual address of sections the coff spec says:
... for simplicity, compilers should set this to zero. Otherwise, it is an
arbitrary value that is subtracted from offsets during relocation.
We don't currently subtract it, so check that it is zero.
If some producer does create such files, we can change getRelocationOffset
instead.
llvm-svn: 241447
Add support for resolving MIPS32r6 relocations in MCJIT.
Patch by Vladimir Radosavljevic.
Differential Revision: http://reviews.llvm.org/D10687
llvm-svn: 241442
From the linker's perspective, an available_externally global is equivalent
to an external declaration (per isDeclarationForLinker()), so it is incorrect
to consider it to be a weak definition.
Also clean up some logic in the dead argument elimination pass and clarify
its comments to better explain how its behavior depends on linkage,
introduce GlobalValue::isStrongDefinitionForLinker() and start using
it throughout the optimizers and backend.
Differential Revision: http://reviews.llvm.org/D10941
llvm-svn: 241413
There is some functional change here because it changes target code from
atoi(3) to StringRef::getAsInteger which has error checking. For valid
constraints there should be no difference.
llvm-svn: 241411
Correctly support assembling "pushw $imm8" on x86-64 targets.
Also some cleanup of the PUSH instructions (PUSH64i16 and PUSHi16 actually
represent the same instruction)
This fixes PR23996
Patch by: david.l.kreitzer@intel.com
Differential Revision: http://reviews.llvm.org/D10878
llvm-svn: 241404
Followup to D10433 and D10589 that fixes i8/i16 uint2fp vector conversions by zero extending to i32 and using the sint2fp path (unless the target does actually support uint2fp).
llvm-svn: 241394
Although this does cut the number of traces recomputed by ~10% for the
test case mentioned in http://reviews.llvm.org/D10460, it doesn't
make a dent in the overall performance. That example needs to be more
selective when invalidating traces.
llvm-svn: 241393
This is needed for COFF linkers to distinguish between weak external aliases
and regular symbols with LLVM weak linkage, which are represented as strong
symbols in COFF.
llvm-svn: 241389
Requested by Eugene Rozenfeld of the LLILC team, this feature allows JIT
clients to skip relocations for selected external symbols by returning ~0ULL
from their symbol resolver. If this value is returned for a given symbol,
RuntimeDyld will skip all relocations for that symbol. The client will be
responsible for applying the skipped relocations manually before the code
is executed.
llvm-svn: 241383
SHT_NOBITS sections do not have content in an object file. Now the yaml2obj
tool does not accept `Content` field for such sections, and the obj2yaml
tool does not attempt to read the section content from a file.
Restore r241350 and r241352.
llvm-svn: 241377
Summary:
Looking at r241279, I noticed that UpgradedIntrinsics only gets written
to in the following code:
if (UpgradeIntrinsicFunction(&F, NewFn))
UpgradedIntrinsics[&F] = NewFn;
Looking through UpgradeIntrinsicFunction, we always return false OR
NewFn will be set to a different function from our source.
This patch pulls the F != NewFn into UpgradeIntrinsicFunction as an
assert, and removes the check from callers of UpgradeIntrinsicFunction.
Reviewers: rafael, chandlerc
Subscribers: llvm-commits-list
Differential Revision: http://reviews.llvm.org/D10915
llvm-svn: 241369