forked from OSchip/llvm-project
5 Commits
Author | SHA1 | Message | Date |
---|---|---|---|
Hal Finkel | cf59921670 |
[PowerPC] Make LDtocL and friends invariant loads
LDtocL, and other loads that roughly correspond to the TOC_ENTRY SDAG node, represent loads from the TOC, which is invariant. As a result, these loads can be hoisted out of loops, etc. In order to do this, we need to generate GOT-style MMOs for TOC_ENTRY, which requires treating it as a legitimate memory intrinsic node type. Once this is done, the MMO transfer is automatically handled for TableGen-driven instruction selection, and for nodes generated directly in PPCISelDAGToDAG, we need to transfer the MMOs manually. Also, we were not transferring MMOs associated with pre-increment loads, so do that too. Lastly, this fixes an exposed bug where R30 was not added as a defined operand of UpdateGBR. This problem was highlighted by an example (used to generate the test case) posted to llvmdev by Francois Pichet. llvm-svn: 230553 |
|
Bill Schmidt | 82f1c775a0 |
[PowerPC] Fix reverted patch r227976 to avoid register assignment issues
See full discussion in http://reviews.llvm.org/D7491. We now hide the add-immediate and call instructions together in a separate pseudo-op, which is tagged to define GPR3 and clobber the call-killed registers. The PPCTLSDynamicCall pass prior to RA now expands this op into the two separate addi and call ops, with explicit definitions of GPR3 on both instructions, and explicit clobbers on the call instruction. The pass is now marked as requiring and preserving the LiveIntervals and SlotIndexes analyses, and fixes these up after the replacement sequences are introduced. Self-hosting has been verified on LE P8 and BE P7 with various optimization levels, etc. It has also been verified with the --no-tls-optimize flag workaround removed. llvm-svn: 228725 |
|
Hal Finkel | 0d2a1515d5 |
Revert "r227976 - [PowerPC] Yet another approach to __tls_get_addr" and related fixups
Unfortunately, even with the workaround of disabling the linker TLS optimizations in Clang restored (which has already been done), this still breaks self-hosting on my P7 machine (-O3 -DNDEBUG -mcpu=native). Bill is currently working on an alternate implementation to address the TLS issue in a way that also fully elides the linker bug (which, unfortunately, this approach did not fully), so I'm reverting this now. llvm-svn: 228460 |
|
Bill Schmidt | 685aa8b0c5 |
[PowerPC] Yet another approach to __tls_get_addr
This patch is a third attempt to properly handle the local-dynamic and global-dynamic TLS models. In my original implementation, calls to __tls_get_addr were hidden from view until the asm-printer phase, at which point the underlying branch-and-link instruction was created with proper relocations. This mostly worked well, but I used some repellent techniques to ensure that the TLS_GET_ADDR nodes at the SD and MI levels correctly received input from GPR3 and produced output into GPR3. This proved to work badly in the presence of multiple TLS variable accesses, with the copies to and from GPR3 being scheduled incorrectly and generally creating havoc. In r221703, I addressed that problem by representing the calls to __tls_get_addr as true calls during instruction lowering. This had the advantage of removing all of the bad hacks and relying on the existing call machinery to properly glue the copies in place. It looked like this was going to be the right way to go. However, as a side effect of the recent discovery of problems with linker optimizations for TLS, we discovered cases of suboptimal code generation with this strategy. The problem comes when tls_get_addr is called for the same address, and there is a resulting CSE opportunity. It turns out that in such cases MachineCSE will common the addis/addi instructions that set up the input value to tls_get_addr, but will not common the calls themselves. MachineCSE does not have any machinery to common idempotent calls. This is perfectly sensible, since presumably this would be done at the IR level, and introducing calls in the back end isn't commonplace. In any case, we end up with two calls to __tls_get_addr when one would suffice, and that isn't good. I presumed that the original design would have allowed commoning of the machine-specific nodes that hid the __tls_get_addr calls, so as suggested by Ulrich Weigand, I went back to that design and cleaned it up so that the copies were properly held together by glue nodes. However, it turned out that this didn't work either...the presence of copies to physical registers kept the machine-specific nodes from being commoned also. All of which leads to the design presented here. This is a return to the original design, except that no attempt is made to introduce copies to and from GPR3 during instruction lowering. Virtual registers are used until prior to register allocation. At that point, a special pass is run that identifies the machine-specific nodes that hide the tls_get_addr calls and introduces the copies to and from GPR3 around them. The register allocator then coalesces these copies away. With this design, MachineCSE succeeds in commoning tls_get_addr calls where possible, and we get nice optimal code generation (better than GCC at the moment, which does not common these calls). One additional problem must be dealt with: After introducing the mentions of the physical register GPR3, the aggressive anti-dependence breaker sees opportunities to improve scheduling by selecting a different register instead. Flags must be used on the instruction descriptions to tell the anti-dependence breaker to keep its hands in its pockets. One thing missing from the original design was recording a definition of the link register on the GET_TLS_ADDR nodes. Doing this was found to be insufficient to force a stack frame to be created, which led to looping behavior because two different LR values were stored at the same address. This appears to have been an oversight in PPCFrameLowering::determineFrameLayout(), which is repaired here. Because MustSaveLR() returns true for calls to builtin_return_address, this changed the expected behavior of test/CodeGen/PowerPC/retaddr2.ll, which now stacks a frame but formerly did not. I've fixed the test case to reflect this. There are existing TLS tests to catch regressions; the checks in test/CodeGen/PowerPC/tls-store2.ll proved to be too restrictive in the face of instruction scheduling with these changes, so I fixed that up. I've added a new test case based on the PrettyStackTrace module that demonstrated the original problem. This checks that we get correct code generation and that CSE of the calls to __get_tls_addr has taken place. llvm-svn: 227976 |
|
Bill Schmidt | 3d9674cfb1 |
[PowerPC] Replace foul hackery with real calls to __tls_get_addr
My original support for the general dynamic and local dynamic TLS models contained some fairly obtuse hacks to generate calls to __tls_get_addr when lowering a TargetGlobalAddress. Rather than generating real calls, special GET_TLS_ADDR nodes were used to wrap the calls and only reveal them at assembly time. I attempted to provide correct parameter and return values by chaining CopyToReg and CopyFromReg nodes onto the GET_TLS_ADDR nodes, but this was also not fully correct. Problems were seen with two back-to-back stores to TLS variables, where the call sequences ended up overlapping with unhappy results. Additionally, since these weren't real calls, the proper register side effects of a call were not recorded, so clobbered values were kept live across the calls. The proper thing to do is to lower these into calls in the first place. This is relatively straightforward; see the changes to PPCTargetLowering::LowerGlobalTLSAddress() in PPCISelLowering.cpp. The changes here are standard call lowering, except that we need to track the fact that these calls will require a relocation. This is done by adding a machine operand flag of MO_TLSLD or MO_TLSGD to the TargetGlobalAddress operand that appears earlier in the sequence. The calls to LowerCallTo() eventually find their way to LowerCall_64SVR4() or LowerCall_32SVR4(), which call FinishCall(), which calls PrepareCall(). In PrepareCall(), we detect the calls to __tls_get_addr and immediately snag the TargetGlobalTLSAddress with the annotated relocation information. This becomes an extra operand on the call following the callee, which is expected for nodes of type tlscall. We change the call opcode to CALL_TLS for this case. Back in FinishCall(), we change it again to CALL_NOP_TLS for 64-bit only, since we require a TOC-restore nop following the call for the 64-bit ABIs. During selection, patterns in PPCInstrInfo.td and PPCInstr64Bit.td convert the CALL_TLS nodes into BL_TLS nodes, and convert the CALL_NOP_TLS nodes into BL8_NOP_TLS nodes. This replaces the code removed from PPCAsmPrinter.cpp, as the BL_TLS or BL8_NOP_TLS nodes can now be emitted normally using their patterns and the associated printTLSCall print method. Finally, as a result of these changes, all references to get-tls-addr in its various guises are no longer used, so they have been removed. There are existing TLS tests to verify the changes haven't messed anything up). I've added one new test that verifies that the problem with the original code has been fixed. llvm-svn: 221703 |