If the original FPU specification involved a restricted VFP unit (d16), ensure
that we reset the functionality when we encounter a new FPU type. In
particular, if the user specified vfpv3-d16, but switched to a VFPv3 (which has
32 double precision registers), we would fail to reset the D16 feature, and
treat it as being equivalent to vfpv3-d16.
llvm-svn: 227603
The FPU directive permits the user to switch the target FPU, enabling
instructions that would be otherwise unavailable. However, when configuring the
new subtarget features, we would not enable the implied functions for newer
FPUs. This would result in invalid rejection of valid input. Ensure that we
inherit the implied FPU functionality when enabling newer versions of the FPU.
Fortunately, these are mostly hierarchical, unlike the CPUs.
Addresses PR22395.
llvm-svn: 227584
Summary:
This is needed by the .cprestore assembler directive.
This directive needs to be able to insert an LW instruction after every JALR replacement of a JAL pseudo-instruction
(and never after a JALR which has NOT been a result of a pseudo-instruction replacement).
The problem with using InstAlias for these is that after it replaces the pseudo-instruction, we can't find out if the resulting JALR instruction
was generated by an InstAlias or not, so we don't know whether or not to insert our LW instruction.
By replacing it manually, we know when the pseudo-instruction replacement happens and we can insert the LW instruction correctly.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: emaste, llvm-commits
Differential Revision: http://reviews.llvm.org/D5601
llvm-svn: 227568
than on MipsSubtargetInfo.
This required a bit of massaging in the MC level to handle this since
MC is a) largely a collection of disparate classes with no hierarchy,
and b) there's no overarching equivalent to the TargetMachine, instead
only the subtarget via MCSubtargetInfo (which is the base class of
TargetSubtargetInfo).
We're now storing the ABI in both the TargetMachine level and in the
MC level because the AsmParser and the TargetStreamer both need to
know what ABI we have to parse assembly and emit objects. The target
streamer has a pointer to the one in the asm parser and is updated
when the asm parser is created. This is fragile as the FIXME comment
notes, but shouldn't be a problem in practice since we always
create an asm parser before attempting to emit object code via the
assembler. The TargetMachine now contains the ABI so that the DataLayout
can be constructed dependent upon ABI.
All testcases have been updated to use the -target-abi command line
flag so that we can set the ABI without using a subtarget feature.
Should be no change visible externally here.
llvm-svn: 227102
-no-exec-stack. This was due to it not deriving from the correct
asm info base class and missing the override for the exec
stack section query. Added another line to the noexec test
line to make sure this doesn't regress.
llvm-svn: 227074
These tests are asserting and crashing for me, and 'not' sees that as a
non-zero exit code instead of a signal code for obscure Windows reasons.
This causes the test to pass, giving me an unclean 'ninja check'.
The test is already XFAILd, so just run the test without 'not' and let
lit handle the failure.
llvm-svn: 226958
Summary:
We used to silently ignore any empty .module's and we used to give an error saying that we found
an "unexpected token at start of statement" when the value of the option wasn't an identifier (e.g. if it was a number).
We now give an error saying that we "expected .module option identifier" in both of those cases.
I also fixed the other tests in mips-abi-bad.s, which all seemed to be broken.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7095
llvm-svn: 226905
The ELF format is used on Windows by the MCJIT engine. Thus, on Windows, the
ELFObjectWriter can encounter symbols mangled using the MS Visual Studio C++
name mangling. Symbols mangled using the MSVC C++ name mangling can legally
have "@@@" as a substring. The EFLObjectWriter should not interpret the "@@@"
substring as specifying GNU-style symbol versioning. The ELFObjectWriter
therefore check for the MSVC C++ name mangling prefix which is either "?", "@?",
"imp_?" or "imp_?@".
llvm-svn: 226830
Windows supports a restricted set of relocations (compared to ARM ELF). In some
cases, we may end up generating an unsupported relocation. This can occur with
bad input to the assembler in particular (the frontend should never generate
code that cannot be compiled). Generate an error rather than just aborting.
The change in the API is driven by the desire to provide a slightly more helpful
message for debugging purposes.
llvm-svn: 226779
Implement microMIPS 16-bit unconditional branch instruction B.
Implemented 16-bit microMIPS unconditional instruction has real name B16, and
B is an alias which expands to either B16 or BEQ according to the rules:
b 256 --> b16 256 # R_MICROMIPS_PC10_S1
b 12256 --> beq $zero, $zero, 12256 # R_MICROMIPS_PC16_S1
b label --> beq $zero, $zero, label # R_MICROMIPS_PC16_S1
Differential Revision: http://reviews.llvm.org/D3514
llvm-svn: 226657
Implement microMIPS 16-bit unconditional branch instruction B.
Implemented 16-bit microMIPS unconditional instruction has real name B16, and
B is an alias which expands to either B16 or BEQ according to the rules:
b 256 --> b16 256 # R_MICROMIPS_PC10_S1
b 12256 --> beq $zero, $zero, 12256 # R_MICROMIPS_PC16_S1
b label --> beq $zero, $zero, label # R_MICROMIPS_PC16_S1
Differential Revision: http://reviews.llvm.org/D3514
llvm-svn: 226577
This commits adds the octeon branch instructions bbit0/bbit032/bbit1/bbit132.
It also includes patterns for instruction selection and test cases.
Reviewed by D. Sanders
llvm-svn: 226573
The fixes are to note that AArch64 has additional restrictions on when local
relocations can be used. In particular, ld64 requires that relocations to
cstring/cfstrings use linker visible symbols.
Original message:
In an assembly expression like
bar:
.long L0 + 1
the intended semantics is that bar will contain a pointer one byte past L0.
In sections that are merged by content (strings, 4 byte constants, etc), a
single position in the section doesn't give the linker enough information.
For example, it would not be able to tell a relocation must point to the
end of a string, since that would look just like the start of the next.
The solution used in ELF to use relocation with symbols if there is a non-zero
addend.
In MachO before this patch we would just keep all symbols in some sections.
This would miss some cases (only cstrings on x86_64 were implemented) and was
inefficient since most relocations have an addend of 0 and can be represented
without the symbol.
This patch implements the non-zero addend logic for MachO too.
llvm-svn: 226503
An assignment will produce a symbol with a given section and offset. There is
no way to represent something like "1 byte after a common symbol".
This matches the behavior of GNU as.
Part of PR22217.
llvm-svn: 226470
No change in this commit, but clang was changed to also produce trivial comdats when
needed.
Original message:
Don't create new comdats in CodeGen.
This patch stops the implicit creation of comdats during codegen.
Clang now sets the comdat explicitly when it is required. With this patch clang and gcc
now produce the same result in pr19848.
llvm-svn: 226467
The tests for the ISA's should now be approximately diffable. That is, the
output of 'diff valid-mips1.txt valid-mips2.txt' should be emit the lines
for instructions that were added/removed to/from MIPS-I by MIPS-II. This
doesn't work perfectly at the moment due to ordering differences but it
should be close.
llvm-svn: 226408
This reverts commit r226173, adding r226038 back.
No change in this commit, but clang was changed to also produce trivial comdats for
costructors, destructors and vtables when needed.
Original message:
Don't create new comdats in CodeGen.
This patch stops the implicit creation of comdats during codegen.
Clang now sets the comdat explicitly when it is required. With this patch clang and gcc
now produce the same result in pr19848.
llvm-svn: 226242
Fill out our support for the floating-point status and control register
instructions (mcrfs and friends). As it turns out, these are necessary for
compiling src/test/harness_fp.h in TBB for PowerPC.
Thanks to Raf Schietekat for reporting the issue!
llvm-svn: 226070
This commit moves `MDLocation`, finishing off PR21433. There's an
accompanying clang commit for frontend testcases. I'll attach the
testcase upgrade script I used to PR21433 to help out-of-tree
frontends/backends.
This changes the schema for `DebugLoc` and `DILocation` from:
!{i32 3, i32 7, !7, !8}
to:
!MDLocation(line: 3, column: 7, scope: !7, inlinedAt: !8)
Note that empty fields (line/column: 0 and inlinedAt: null) don't get
printed by the assembly writer.
llvm-svn: 226048
This patch stops the implicit creation of comdats during codegen.
Clang now sets the comdat explicitly when it is required. With this patch clang and gcc
now produce the same result in pr19848.
llvm-svn: 226038
The int instruction takes as an operand an 8-bit immediate value. Validate that
the input is valid rather than silently truncating the value.
llvm-svn: 225941
One is that AArch64 has additional restrictions on when local relocations can
be used. We have to take those into consideration when deciding to put a L
symbol in the symbol table or not.
The other is that ld64 requires the relocations to cstring to use linker
visible symbols on AArch64.
Thanks to Michael Zolotukhin for testing this!
Remove doesSectionRequireSymbols.
In an assembly expression like
bar:
.long L0 + 1
the intended semantics is that bar will contain a pointer one byte past L0.
In sections that are merged by content (strings, 4 byte constants, etc), a
single position in the section doesn't give the linker enough information.
For example, it would not be able to tell a relocation must point to the
end of a string, since that would look just like the start of the next.
The solution used in ELF to use relocation with symbols if there is a non-zero
addend.
In MachO before this patch we would just keep all symbols in some sections.
This would miss some cases (only cstrings on x86_64 were implemented) and was
inefficient since most relocations have an addend of 0 and can be represented
without the symbol.
This patch implements the non-zero addend logic for MachO too.
llvm-svn: 225644
This adds support for parsing and emitting the SBREL relocation variant for the
ARM target. Handling this relocation variant is necessary for supporting the
full ARM ELF specification. Addresses PR22128.
llvm-svn: 225595
There is a fair number of relocations that are part of the AAELF specification.
Simply merge the tests into a single test file, otherwise, we will end up with
far too many test files to test each relocation type. NFC.
llvm-svn: 225576
These tests are checking the relocation generation. Use the readobj output as
it is much easier to follow when glancing over the tests.
llvm-svn: 225575
This is equivalent to the AMDGPUTargetMachine now, but it is the
starting point for separating R600 and GCN functionality into separate
targets.
It is recommened that users start using the gcn triple for GCN-based
GPUs, because using the r600 triple for these GPUs will be deprecated in
the future.
llvm-svn: 225277
Requires new AsmParserOperand types that detect 16-bit and 32/64-bit mode so that we choose the right instruction based on default sizing without predicates. This is necessary since predicates mess up the disassembler table building.
llvm-svn: 225256
Tag_compatibility takes two arguments, but before this patch it would
erroneously accept just one, it now produces an error in that case.
Change-Id: I530f918587620d0d5dfebf639944d6083871ef7d
llvm-svn: 225167
Claim conformance to version 2.09 of the ARM ABI.
This build attribute must be emitted first amongst the build attributes when
written to an object file. This is to simplify conformance detection by
consumers.
Change-Id: If9eddcfc416bc9ad6e5cc8cdcb05d0031af7657e
llvm-svn: 225166
Newer POWER cores, and the A2, support the cmpb instruction. This instruction
compares its operands, treating each of the 8 bytes in the GPRs separately,
returning a 'mask' result of 0 (for false) or -1 (for true) in each byte.
Code generation support is added, in the form of a PPCISelDAGToDAG
DAG-preprocessing routine, that recognizes patterns close to what the
instruction computes (either exactly, or related by a constant masking
operation), and generates the cmpb instruction (along with any necessary
constant masking operation). This can be expanded if use cases arise.
llvm-svn: 225106
This is necessary to allow the disassembler to be able to handle AdSize32 instructions in 64-bit mode when address size prefix is used.
Eventually we should probably also support 'addr32' and 'addr16' in the assembler to override the address size on some of these instructions. But for now we'll just use special operand types that will lookup the current mode size to select the right instruction.
llvm-svn: 225075
The issues was that AArch64 has additional restrictions on when local
relocations can be used. We have to take those into consideration when
deciding to put a L symbol in the symbol table or not.
Original message:
Remove doesSectionRequireSymbols.
In an assembly expression like
bar:
.long L0 + 1
the intended semantics is that bar will contain a pointer one byte past L0.
In sections that are merged by content (strings, 4 byte constants, etc), a
single position in the section doesn't give the linker enough information.
For example, it would not be able to tell a relocation must point to the
end of a string, since that would look just like the start of the next.
The solution used in ELF to use relocation with symbols if there is a non-zero
addend.
In MachO before this patch we would just keep all symbols in some sections.
This would miss some cases (only cstrings on x86_64 were implemented) and was
inefficient since most relocations have an addend of 0 and can be represented
without the symbol.
This patch implements the non-zero addend logic for MachO too.
llvm-svn: 225048
If a linker directive is already quoted, don't try to quote it again, otherwise it creates a mess.
This pops up in places like:
#pragma comment(linker,"\"/foo bar'\"")
Differential Revision: http://reviews.llvm.org/D6792
llvm-svn: 224998
In an assembly expression like
bar:
.long L0 + 1
the intended semantics is that bar will contain a pointer one byte past L0.
In sections that are merged by content (strings, 4 byte constants, etc), a
single position in the section doesn't give the linker enough information.
For example, it would not be able to tell a relocation must point to the
end of a string, since that would look just like the start of the next.
The solution used in ELF to use relocation with symbols if there is a non-zero
addend.
In MachO before this patch we would just keep all symbols in some sections.
This would miss some cases (only cstrings on x86_64 were implemented) and was
inefficient since most relocations have an addend of 0 and can be represented
without the symbol.
This patch implements the non-zero addend logic for MachO too.
llvm-svn: 224985
It looks like the original intent was to check which symbols were created.
With macho-dump the sections were being checked just to match which symbol
was in which section.
llvm-objdump prints the section a symbol is in.
llvm-svn: 224980
Previously we assumed the section name had the form .text$foo, which is
what we used to do for inline functions. If the dollar wasn't present,
we'd put unwind data in the .pdata and .xdata sections for the main
.text section, which is incorrect.
Fixes PR22001.
llvm-svn: 224738
The ARM ARM states:
LDM/LDMIA/LDMFD:
The SP can be in the list. However, ARM deprecates using these instructions
with SP in the list.
ARM deprecates using these instructions with both the LR and the PC in the
list.
LDMDA/LDMFA/LDMDB/LDMEA/LDMIB/LDMED:
The SP can be in the list. However, instructions that include the SP in the
list are deprecated.
Instructions that include both the LR and the PC in the list are deprecated.
POP:
The SP can only be in the list before ARMv7. ARM deprecates any use of ARM
instructions that include the SP, and the value of the SP after such an
instruction is UNKNOWN.
ARM deprecates the use of this instruction with both the LR and the PC in
the list.
Attempt to diagnose use of deprecated forms of these instructions. This mirrors
the previous changes to diagnose use of the deprecated forms of STM in ARM mode.
llvm-svn: 224682
Fix an off-by-one access introduced in 224502 for push.w and pop.w with single
register operands. Add test cases for both scenarios.
Thanks to Asiri Rathnayake for pointing out the failure!
llvm-svn: 224521
The ARM Architecture Reference Manual states the following:
LDM{,IA,DB}:
The SP cannot be in the list.
The PC can be in the list.
If the PC is in the list:
• the LR must not be in the list
• the instruction must be either outside any IT block, or the last
instruction in an IT block.
POP:
The PC can be in the list.
If the PC is in the list:
• the LR must not be in the list
• the instruction must be either outside any IT block, or the last
instruction in an IT block.
PUSH:
The SP and PC can be in the list in ARM instructions, but not in Thumb
instructions.
STM:{,IA,DB}:
The SP and PC can be in the list in ARM instructions, but not in Thumb
instructions.
llvm-svn: 224502
Summary:
Currently, it supports generating, but not parsing, this expression.
Test added as well.
Test Plan: New test added, no regressions due to this.
Reviewers: hfinkel
Reviewed By: hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6672
llvm-svn: 224415
On X86, the Intel asm parser tries to match all memory operand sizes when
none is explicitly specified. For LEA, which doesn't really have a memory
operand (just a pointer one), this results in multiple successful matches,
one for each memory size. There's no error because it's same opcode, so
really, it's just one match. However, the tablegen'd matcher function
adds opcode/operands to the passed MCInst, and this results in multiple
duplicated operands.
This commit clears the MCInst in the tablegen'd matcher function.
We sometimes clear it when the match failed, so there's no expectation of
keeping the previous content anyway.
Differential Revision: http://reviews.llvm.org/D6670
llvm-svn: 224347
The use of SP and PC in the register list for stores is deprecated on ARM
(ARM ARM A.8.8.199):
ARM deprecates the use of ARM instructions that include the SP or the PC in
the list.
Provide a deprecation warning from the assembler in the case that the syntax is
ever seen.
llvm-svn: 224319
Now that `Metadata` is typeless, reflect that in the assembly. These
are the matching assembly changes for the metadata/value split in
r223802.
- Only use the `metadata` type when referencing metadata from a call
intrinsic -- i.e., only when it's used as a `Value`.
- Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
when referencing it from call intrinsics.
So, assembly like this:
define @foo(i32 %v) {
call void @llvm.foo(metadata !{i32 %v}, metadata !0)
call void @llvm.foo(metadata !{i32 7}, metadata !0)
call void @llvm.foo(metadata !1, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{metadata !3}, metadata !0)
ret void, !bar !2
}
!0 = metadata !{metadata !2}
!1 = metadata !{i32* @global}
!2 = metadata !{metadata !3}
!3 = metadata !{}
turns into this:
define @foo(i32 %v) {
call void @llvm.foo(metadata i32 %v, metadata !0)
call void @llvm.foo(metadata i32 7, metadata !0)
call void @llvm.foo(metadata i32* @global, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{!3}, metadata !0)
ret void, !bar !2
}
!0 = !{!2}
!1 = !{i32* @global}
!2 = !{!3}
!3 = !{}
I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines). I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.
This is part of PR21532.
llvm-svn: 224257
Canonicalize formatting of metadata to make it easier to upgrade via
scripts -- in particular, one line per metadata definition makes it more
`sed`-able.
This is preparation for changing the assembly syntax for metadata [1].
[1]: http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20141208/248449.html
llvm-svn: 224002
Instructions of the form [ADD Rd, pc, #imm] are manually aliased
in processInstruction() to use ADR. To accomodate this, mod_imm handling
had to be tweaked a bit. Turns out it was the manual aliasing that must
be tweaked to accommodate mod_imms instead. More information about the
parsed instruction is available at the point where processInstruction()
is invoked, which makes it easier to detect a mod_imm at that point rather
than trying to detect a potential alias when a mod_imm is being prepped.
Added a test case and fixed some white spaces as well.
llvm-svn: 223772
Fix a compact unwind encoding logic bug which would try to encode
more callee saved registers than it should, leading to early bail out
in the encoding logic and abusive use of DWARF frame mode unnecessarily.
Also remove no-compact-unwind.ll which was testing the wrong thing
based on this bug and move it to valid 'compact unwind' tests. Added
other few more tests too.
llvm-svn: 223676
No functional changes. Got myself bitten in r223113 when adding support for
modified immediate syntax (regressions reported by joerg@britannica.bec.de,
fixes in r223366 and r223381). Our assembler tests did not cover serveral
different syntax variants. This patch expands the test coverage to check for
the following cases:
1. Modified immediate operands may be expressed with expressions, as in #(4 * 2)
instead of #8.
2. Modified immediate operands may be _optionally_ prefixed by a '#' symbol or a
'$' symbol.
3. Certain instructions (e.g. ADD) support single input register variants;
[ADD r0, #mod_imm] is same as [ADD r0, r0, #mod_imm].
4. Certain instructions have aliases which convert plain immediates to modified
immediates. For an example, [ADD r0, -10] is not valid because -10 (in two's
complement) cannot be encoded as a modified immediate, but ARMInstrInfo.td
defines an alias which can transform this into a [SUB r0, 10].
llvm-svn: 223475
r223113 added support for ARM modified immediate assembly syntax. Which
assumes all immediate operands are prefixed with a '#'. This assumption
is wrong as per the ARMARM - which recommends that all '#' characters be
treated optional. The current patch fixes this regression and adds a test
case. A follow-up patch will expand the test coverage to other instructions.
llvm-svn: 223381
r223113 added support for ARM modified immediate assembly syntax. That patch
has broken support for immediate expressions, as in:
add r0, #(4 * 4)
It wasn't caught because we don't have any tests for this feature. This patch
fixes this regression and adds test cases.
llvm-svn: 223366
The X86AsmParser intel handling was refactored in r216481, making it
try each different memory operand size to see which one matches.
Operand sizes larger than 80 ("[xyz]mmword ptr") were forgotten, which
led to an "invalid operand" error for code such as:
movdqa [rax], xmm0
llvm-svn: 223187
Previously .cpu directive in ARM assembler didnt switch to the new CPU and
therefore acted as a nop. This implemented real action for .cpu and eg.
allows to assembler FreeBSD kernel with -integrated-as.
llvm-svn: 223147
Certain ARM instructions accept 32-bit immediate operands encoded as a 8-bit
integer value (0-255) and a 4-bit rotation (0-30, even). Current ARM assembly
syntax support in LLVM allows the decoded (32-bit) immediate to be specified
as a single immediate operand for such instructions:
mov r0, #4278190080
The ARMARM defines an extended assembly syntax allowing the encoding to be made
more explicit, as in:
mov r0, #255, #8 ; (same 32-bit value as above)
The behaviour of the two instructions can be different w.r.t flags, which is
documented under "Modified immediate constants" in ARMARM. This patch enables
support for this extended syntax at the MC layer.
llvm-svn: 223113
Add checkDecodedInstruction for post-decode checking of instructions, to catch
the corner cases like HVC that don't fit into the general pattern. Needed to
check for an invalid condition field in instruction encoding despite HVC not
taking a predicate.
Patch by Matthew Wahab.
Change-Id: I48e28de981d7a9e43569594da3c45fb478b4f795
llvm-svn: 222992
Add assembler support for the fixed-point cache-inhibited load/store
instructions. These are hypervisor-level only, so don't get too excited ;)
Fixes PR21650.
llvm-svn: 222976
I also added a test.
Original message:
Allow FDE references outside the +/-2GB range supported by PC relative
offsets for code models other than small/medium. For JIT application,
memory layout is less controlled and can result in truncations
otherwise.
Patch from Akos Kiss.
Differential Revision: http://reviews.llvm.org/D6079
llvm-svn: 222897
This reverts commit r222760.
It changed our behaviour on PIC so we don't match gas anymore. It also
included lots of unnecessary changes to tests.
If those changes are desirable, there should be an independent discussion
as they are out of scope for that patch.
I will recommit the other bits.
llvm-svn: 222896
The string data for string-valued build attributes were being unconditionally
uppercased. There is no mention in the ARM ABI addenda about case conventions,
so it's technically implementation defined as to whether the data are
capitialised in some way or not. However, there are good reasons not to
captialise the data.
* It's less work.
* Some vendors may legitimately have case-sensitive checks for these
attributes which would fail on LLVM generated object files.
* There could be locale issues with uppercasing.
The original reasons for uppercasing appear to have stemmed from an
old codesourcery toolchain behaviour, see
http://comments.gmane.org/gmane.comp.compilers.llvm.cvs/87133
This patch makes the object file emitted no longer captialise string
data, it encodes as seen in the assembly source.
Change-Id: Ibe20dd6e60d2773d57ff72a78470839033aa5538
llvm-svn: 222882
This mostly entails adding relocations, however there are a couple of
changes to existing relocations:
1. R_AARCH64_NONE is defined to be zero rather than 256
R_AARCH64_NONE has been defined to be zero for a long time elsewhere
e.g. binutils and glibc since the submission of the AArch64 port in
2012 so this is required for compatibility.
2. R_AARCH64_TLSDESC_ADR_PAGE renamed to R_AARCH64_TLSDESC_ADR_PAGE21
I don't think there is any way for relocation names to leak out of LLVM
so this should not break anything.
Tested with check-all with no regressions.
llvm-svn: 222821