Get the argument register and ensure there's a copy to the virtual
register. AMDGPU and AArch64 have similarish code to get the livein
value, and I also want to use this in multiple places.
This is a bit more aggressive about setting the register class than
the original function, but that's probably OK.
I think we're missing a few verifier checks for function live ins. I
noticed AArch64's calling convention code is not actually adding
liveins to functions, only the entry block (which apparently might not
matter that much?). There should probably be a verifier check that
entry block live ins are also live into the function. We also might
need a verifier check that the copy to the livein virtual register is
in the entry block.
When lldb cannot find source file thus IDE renders a disassembly view, add syntax highlighting for constants, registers and final line comments for better debugging experience.
The original plain disassembly view looks like:
{F12401687}
An ideal view is like the screenshot attached.
{F12401515}
In this diff, the mimeType is a kind of media type for formatting the content in the response to a source request. Elements in the disassembly view, like constants, registers and final line comments are colored for highlighting.
A built-in support in the VSCode IDE for syntax highlighting will identify the which mimeType to apply and render the disassembly view as expected.
Reviewed By: wallace, clayborg
Differential Revision: https://reviews.llvm.org/D84555
The SVE instruction set only supports sdiv/udiv for 32-bit and 64-bit
integers. If we see an 8-bit or 16-bit divide, widen the operands to 32
bits, and narrow the result.
Differential Revision: https://reviews.llvm.org/D85170
* Add SystemZ to the list of supported architectures.
* XFAIL a few tests.
Coverage reporting is broken, and is not easy to fix (see comment in
coverage.test). Interaction with sanitizers needs to be investigated
more thoroughly, since they appear to reduce coverage in certain cases.
If a section is supposed to hold elements of type T, then the
corresponding CreateSecStartEnd()'s Ty parameter represents T*.
Forwarding it to GlobalVariable constructor causes the resulting
GlobalVariable's type to be T*, and its SSA value type to be T**, which
is one indirection too many. This issue is mostly masked by pointer
casts, however, the global variable still gets an incorrect alignment,
which causes SystemZ to choose wrong instructions to access the
section.
The usage pattern of Bundle variable assumes the machine is little
endian, which is not the case on SystemZ. Fix by converting Bundle to
little-endian when necessary.
This allows people to use `int8_t` instead of `char`, -funsigned-char,
and generally decouples SIMD from the specialness of `char`.
And it makes intrinsics like `__builtin_wasm_add_saturate_s_i8x16`
and `__builtin_wasm_add_saturate_u_i8x16` use signed and unsigned
element types, respectively.
Differential Revision: https://reviews.llvm.org/D85074
- Moved TypeRange into its own header/cpp file, and add hashing support.
- Change FunctionType::get() and TupleType::get() to use TypeRange
Differential Revision: https://reviews.llvm.org/D85075
This corresponds with the SelectionDAGISel change in D84056.
Also, rename some poorly named tests in CodeGen/X86/fast-isel-fneg.ll with NFC.
Differential Revision: https://reviews.llvm.org/D85149
Four new CO-RE relocations are introduced:
- TYPE_EXISTENCE: whether a typedef/record/enum type exists
- TYPE_SIZE: the size of a typedef/record/enum type
- ENUM_VALUE_EXISTENCE: whether an enum value of an enum type exists
- ENUM_VALUE: the enum value of an enum type
These additional relocations will make CO-RE bpf programs
more adaptive for potential kernel internal data structure
changes.
Differential Revision: https://reviews.llvm.org/D83878
Always define a remapping for the memref replacement (`indexRemap`)
with the proper number of inputs, including all the `outerIVs`, so that
the number of inputs and the operands provided for the map don't mismatch.
Reviewed By: bondhugula, andydavis1
Differential Revision: https://reviews.llvm.org/D85177
This one is pretty easy and shrinks the list of unhandled
intrinsics. I'm not sure how relevant the insert point is. Using the
insert position of EntryBuilder will place this after
constants. SelectionDAG seems to end up emitting these after argument
copies and before anything else, but I don't think it really
matters. This also ends up emitting these in the opposite order from
SelectionDAG, but I don't think that matters either.
This also needs a fix to stop the later passes dropping this as a dead
instruction. DeadMachineInstructionElim's version of isDead special
cases LOCAL_ESCAPE for some reason, and I'm not sure why it's excluded
from MachineInstr::isLabel (or why isDead doesn't check it).
I also noticed DeadMachineInstructionElim never considers inline asm
as dead, but GlobalISel will drop asm with no constraints.
Introduces the expand and compress operations to the Vector dialect
(important memory operations for sparse computations), together
with a first reference implementation that lowers to the LLVM IR
dialect to enable running on CPU (and other targets that support
the corresponding LLVM IR intrinsics).
Reviewed By: reidtatge
Differential Revision: https://reviews.llvm.org/D84888
This patch tries to improve readability and maintenance
of createVectorizedLoopSkeleton by reorganizing some lines,
updating some of the comments and breaking it up into
smaller logical units.
Reviewed By: pjeeva01
Differential Revision: https://reviews.llvm.org/D83824
This revision adds the following peephole optimization
and it's negation:
%a = urem i64 %x, %y
%b = icmp ule i64 %a, %x
====>
%b = true
With John Regehr's help this optimization was checked with Alive2
which suggests it should be valid.
This pattern occurs in the bound checks of Rust code, the program
const N: usize = 3;
const T = u8;
pub fn split_mutiple(slice: &[T]) -> (&[T], &[T]) {
let len = slice.len() / N;
slice.split_at(len * N)
}
the method call slice.split_at will check that len * N is within
the bounds of slice, this bounds check is after some transformations
turned into the urem seen above and then LLVM fails to optimize it
any further. Adding this optimization would cause this bounds check
to be fully optimized away.
ref: https://github.com/rust-lang/rust/issues/74938
Differential Revision: https://reviews.llvm.org/D85092
D83530 removed --inlining={true,false} which were used by old asan_symbolize.py script.
Add compatibility aliases so that old asan_symbolize.py and sanitizer
binaries can work with new llvm-symbolizer.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D85228
Teach SCCP to create notconstant lattice values from inequality
assumes and nonnull metadata, and update getConstant() to make
use of them. Additionally isOverdefined() needs to be changed to
consider notconstant an overdefined value.
Handling inequality branches is delayed until our branch on undef
story in other passes has been improved.
Differential Revision: https://reviews.llvm.org/D83643
This is a followup to 817b3a6fe3a4452eb61a2503c8beaa7267ca0351: in `builder_base` we should use abspath, not realpath, because the name is significant.
This is used by test cases that use `@skipIf(compiler="clang", compiler_version=['<', <version>])`
Introduced by fd6584a220
Following similar use of casts in AsmParser.cpp, for instance - ideally
this type would use unsigned chars as they're more representative of raw
data and don't get confused around implementation defined choices of
char's signedness, but this is what it is & the signed/unsigned
conversions are (so far as I understand) safe/bit preserving in this
usage and what's intended, given the API design here.
Simplify semi-affine expression for the operations like ceildiv,
floordiv and modulo by any given symbol by checking divisibilty by that
symbol.
Some properties used in simplification are:
1) Commutative property of the floordiv and ceildiv:
((expr1 floordiv expr2) floordiv expr3 ) = ((expr1 floordiv expr3) floordiv expr2)
((expr1 ceildiv expr2) ceildiv expr3 ) = ((expr1 ceildiv expr3) ceildiv expr2)
While simplification if operations are different no simplification is
possible as there is no property that simplify expressions like these:
((expr1 ceildiv expr2) floordiv expr3) or ((expr1 floordiv expr2)
ceildiv expr3).
2) If both expr1 and expr2 are divisible by the expr3 then:
(expr1 % expr2) / expr3 = ((expr1 / expr3) % (expr2 / expr3))
where / is divide symbol.
3) If expr1 is divisible by expr2 then expr1 % expr2 = 0.
Signed-off-by: Yash Jain <yash.jain@polymagelabs.com>
Differential Revision: https://reviews.llvm.org/D84920
This patch stops unconditionally transforming FSUB(-0, X) into an FNEG(X) while building the MIR.
This corresponds with the SelectionDAGISel change in D84056.
Differential Revision: https://reviews.llvm.org/D85139
Upstream the code for dealing with TCC introduced in macOS Mojave. This
will make the debuggee instead of the debugger responsible for the
privileges it needs.
Differential revision: https://reviews.llvm.org/D85217
There seems to be an unrelated CSEMIRBuilder bug that was causing
expensive checks failures in this case. Hack the test to avoid this
problem for now until that's fixed.
for the advantage outlined by D83639 ([OptTable] Support grouped short options)
Some behavior changes:
* -i={0,false} is removed. Use --no-inlines instead.
* --demangle={0,false} is removed. Use --no-demangle instead
* -untag-addresses={0,false} is removed. Use --no-untag-addresses instead
Added a higher level API OptTable::parseArgs which handles optional
initial options populated from an environment variable, expands response
files recursively, and parses options.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D83530