For Cylone, the instruction "movi.2d vD, #0" is executed incorrectly in some rare
circumstances. Work around the issue conservatively by avoiding the instruction entirely.
This patch changes CodeGen so that problematic instructions are never
generated, and the AsmParser so that an equivalent instruction is used (with a
warning).
llvm-svn: 320965
Search from AND nodes to find whether they can be propagated back to
loads, so that the AND and load can be combined into a narrow load.
We search through OR, XOR and other AND nodes and all bar one of the
leaves are required to be loads or constants. The exception node then
needs to be masked off meaning that the 'and' isn't removed, but the
loads(s) are narrowed still.
Differential Revision: https://reviews.llvm.org/D41177
llvm-svn: 320962
Summary:
lldb-server was sending the "exit" packet (W??) twice. This happened
because it was handling both the pre-exit (PTRACE_EVENT_EXIT) and
post-exit (WIFEXITED) as exit events. We had some code which was trying
to detect when we've already sent the exit packet, but this stopped
working quite a while ago.
This never really caused any problems in practice because the client
automatically closes the connection after receiving the first packet, so
the only effect of this was some warning messages about extra packets
from the lldb-server test suite, which were ignored because they didn't
fail the test.
The new test suite will be stricter about this, so I fix this issue
ignoring the first event. I think this is the correct behavior, as the
inferior is not really dead at that point, so it's premature to send the
exit packet.
There isn't an actual test yet which would verify the exit behavior, but
in my next patch I will add a test which will also test this
functionality.
Reviewers: eugene
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D41069
llvm-svn: 320961
Based on the names of the check lines, features seems more appropriate that cpu.
Spotted while prototyping my patch to make 512-bit vectors illegal on SKX sometimes.
llvm-svn: 320959
This patch introduce a switch to control splitting of non-whole-alloca slices with default off.
The switch will be default on again after fixing an issue reported in PR35657.
llvm-svn: 320958
The block I moved things that need BWI and 512-bit or VLX is incorrectly qualified with just hasBWI || hasVLX. Here I've qualified it with hasBWI && (hasAVX512 || hasVLX) where the hasAVX512 will be replaced with allowing 512-bit vectors in an upcoming patch.
llvm-svn: 320957
When we put the value in select placeholder we must pass
the value through simplification tracker due to the value might
be already simplified and erased.
This is a fix for PR35658.
Reviewers: john.brawn, uabelho
Reviewed By: john.brawn
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41251
llvm-svn: 320956
This is a follow up to the fmaddsub support added in r320950. Hopefully in the future we can fix lowering to handle this fmsubadd too.
llvm-svn: 320951
Summary:
We had no tests for this and we couldn't do the optimization because of a bad use count check. We need to know how many non-undef pieces of the build vector were filled in and ensure our use count is equal to that. But on the shuffle combine version we need the use count to be 2.
The missing coverage was noticed during the review of D40335.
Reviewers: RKSimon, zvi, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41133
llvm-svn: 320950
This is a preparetory change for function gc which also
requires relocations to be copied in ranges like this.
Differential Revision: https://reviews.llvm.org/D41313
llvm-svn: 320948
Summary:
These fields are useful for lld's gc-sections support
Also remove an unused field.
Subscribers: jfb, dschuff, jgravelle-google, aheejin, sunfish
Differential Revision: https://reviews.llvm.org/D41320
llvm-svn: 320946
Summary:
For byval arguments, the number of dereferenceable bytes is equal to
the size of the pointee, not the pointer.
Reviewers: hfinkel, rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41305
llvm-svn: 320939
Assuming we can safely adjust the broadcast index for the new type to keep it suitably aligned, then peek through BITCASTs when looking for the broadcast source.
Fixes PR32007
llvm-svn: 320933
Summary:
https://reviews.llvm.org/D41121 broke the FreeBSD build due to that type not
being defined on FreeBSD. As far as I can tell, it is an int, but I do not have
a way to test the change.
Reviewers: alekseyshl, kparzysz
Reviewed By: kparzysz
Subscribers: kparzysz, emaste, kubamracek, krytarowski, #sanitizers, llvm-commits
Differential Revision: https://reviews.llvm.org/D41325
llvm-svn: 320931
If the loop operand type is int8 then there will be no residual loop for the
unknown size expansion. Dont create the residual-size and bytes-copied values
when they are not needed.
llvm-svn: 320929
In those cases, the pass thru operand of the methods isn't used. The calls to the scalar version were passing a MVT::i1 zero, which is an illegal type at the stage this code runs.
llvm-svn: 320928
Previously we promoted to v8i64, but we don't need to go all the way to 512-bits. If we have VLX we can use the 256-bit instruction. And even if we don't have VLX we can widen v8i32 to v16i32 and drop the upper half.
llvm-svn: 320926
It turns out that this is the only change required in libcxx
for it to compile with the new `wasm32-unknown-unknown-wasm`
target recently added to Clang.
Patch by Nicholas Wilson!
Differential Revision: https://reviews.llvm.org/D41073
llvm-svn: 320925
We had a lot of separate 32 and 64 instructions that had the same scheduling data. This merges them into the same regular expression. This is pretty consistent with a lot of other instructions.
llvm-svn: 320924
We want to do this for 2 reasons:
1. Value tracking does not recognize the ashr variant, so it would fail to match for cases like D39766.
2. DAGCombiner does better at producing optimal codegen when we have the cmp+sel pattern.
More detail about what happens in the backend:
1. DAGCombiner has a generic transform for all targets to convert the scalar cmp+sel variant of abs
into the shift variant. That is the opposite of this IR canonicalization.
2. DAGCombiner has a generic transform for all targets to convert the vector cmp+sel variant of abs
into either an ABS node or the shift variant. That is again the opposite of this IR canonicalization.
3. DAGCombiner has a generic transform for all targets to convert the exact shift variants produced by #1 or #2
into an ISD::ABS node. Note: It would be an efficiency improvement if we had #1 go directly to an ABS node
when that's legal/custom.
4. The pattern matching above is incomplete, so it is possible to escape the intended/optimal codegen in a
variety of ways.
a. For #2, the vector path is missing the case for setlt with a '1' constant.
b. For #3, we are missing a match for commuted versions of the shift variants.
5. Therefore, this IR canonicalization can only help get us to the optimal codegen. The version of cmp+sel
produced by this patch will be recognized in the DAG and converted to an ABS node when possible or the
shift sequence when not.
6. In the following examples with this patch applied, we may get conditional moves rather than the shift
produced by the generic DAGCombiner transforms. The conditional move is created using a target-specific
decision for any given target. Whether it is optimal or not for a particular subtarget may be up for debate.
define i32 @abs_shifty(i32 %x) {
%signbit = ashr i32 %x, 31
%add = add i32 %signbit, %x
%abs = xor i32 %signbit, %add
ret i32 %abs
}
define i32 @abs_cmpsubsel(i32 %x) {
%cmp = icmp slt i32 %x, zeroinitializer
%sub = sub i32 zeroinitializer, %x
%abs = select i1 %cmp, i32 %sub, i32 %x
ret i32 %abs
}
define <4 x i32> @abs_shifty_vec(<4 x i32> %x) {
%signbit = ashr <4 x i32> %x, <i32 31, i32 31, i32 31, i32 31>
%add = add <4 x i32> %signbit, %x
%abs = xor <4 x i32> %signbit, %add
ret <4 x i32> %abs
}
define <4 x i32> @abs_cmpsubsel_vec(<4 x i32> %x) {
%cmp = icmp slt <4 x i32> %x, zeroinitializer
%sub = sub <4 x i32> zeroinitializer, %x
%abs = select <4 x i1> %cmp, <4 x i32> %sub, <4 x i32> %x
ret <4 x i32> %abs
}
> $ ./opt -instcombine shiftyabs.ll -S | ./llc -o - -mtriple=x86_64 -mattr=avx
> abs_shifty:
> movl %edi, %eax
> negl %eax
> cmovll %edi, %eax
> retq
>
> abs_cmpsubsel:
> movl %edi, %eax
> negl %eax
> cmovll %edi, %eax
> retq
>
> abs_shifty_vec:
> vpabsd %xmm0, %xmm0
> retq
>
> abs_cmpsubsel_vec:
> vpabsd %xmm0, %xmm0
> retq
>
> $ ./opt -instcombine shiftyabs.ll -S | ./llc -o - -mtriple=aarch64
> abs_shifty:
> cmp w0, #0 // =0
> cneg w0, w0, mi
> ret
>
> abs_cmpsubsel:
> cmp w0, #0 // =0
> cneg w0, w0, mi
> ret
>
> abs_shifty_vec:
> abs v0.4s, v0.4s
> ret
>
> abs_cmpsubsel_vec:
> abs v0.4s, v0.4s
> ret
>
> $ ./opt -instcombine shiftyabs.ll -S | ./llc -o - -mtriple=powerpc64le
> abs_shifty:
> srawi 4, 3, 31
> add 3, 3, 4
> xor 3, 3, 4
> blr
>
> abs_cmpsubsel:
> srawi 4, 3, 31
> add 3, 3, 4
> xor 3, 3, 4
> blr
>
> abs_shifty_vec:
> vspltisw 3, -16
> vspltisw 4, 15
> vsubuwm 3, 4, 3
> vsraw 3, 2, 3
> vadduwm 2, 2, 3
> xxlxor 34, 34, 35
> blr
>
> abs_cmpsubsel_vec:
> vspltisw 3, -16
> vspltisw 4, 15
> vsubuwm 3, 4, 3
> vsraw 3, 2, 3
> vadduwm 2, 2, 3
> xxlxor 34, 34, 35
> blr
>
Differential Revision: https://reviews.llvm.org/D40984
llvm-svn: 320921
There are 2 parts to getting the -fassociative-math command-line flag translated to LLVM FMF:
1. In the driver/frontend, we accept the flag and its 'no' inverse and deal with the
interactions with other flags like -ffast-math -fno-signed-zeros -fno-trapping-math.
This was mostly already done - we just need to translate the flag as a codegen option.
The test file is complicated because there are many potential combinations of flags here.
Note that we are matching gcc's behavior that requires 'nsz' and no-trapping-math.
2. In codegen, we map the codegen option to FMF in the IR builder. This is simple code and
corresponding test.
For the motivating example from PR27372:
float foo(float a, float x) { return ((a + x) - x); }
$ ./clang -O2 27372.c -S -o - -ffast-math -fno-associative-math -emit-llvm | egrep 'fadd|fsub'
%add = fadd nnan ninf nsz arcp contract float %0, %1
%sub = fsub nnan ninf nsz arcp contract float %add, %2
So 'reassoc' is off as expected (and so is the new 'afn' but that's a different patch).
This case now works as expected end-to-end although the underlying logic is still wrong:
$ ./clang -O2 27372.c -S -o - -ffast-math -fno-associative-math | grep xmm
addss %xmm1, %xmm0
subss %xmm1, %xmm0
We're not done because the case where 'reassoc' is set is ignored by optimizer passes. Example:
$ ./clang -O2 27372.c -S -o - -fassociative-math -fno-signed-zeros -fno-trapping-math -emit-llvm | grep fadd
%add = fadd reassoc float %0, %1
$ ./clang -O2 27372.c -S -o - -fassociative-math -fno-signed-zeros -fno-trapping-math | grep xmm
addss %xmm1, %xmm0
subss %xmm1, %xmm0
Differential Revision: https://reviews.llvm.org/D39812
llvm-svn: 320920